深度学习笔记 - tensorflow实现彩色图像识别

110 阅读1分钟

本任务着眼于熟悉tensorflow框架搭建流程,跑通训练和测试代码

运行环境:

  • cuda==12.4
  • python==3.10.0
  • tf==2.9.0

一. 检查运行环境

import tensorflow as tf
gpus = tf.config.list_physical_devices("GPU")

if gpus:
    gpu0 = gpus[0] #如果有多个GPU,仅使用第0个GPU
    tf.config.experimental.set_memory_growth(gpu0, True) #设置GPU显存用量按需使用
    tf.config.set_visible_devices([gpu0],"GPU")   
#
[PhysicalDevice(name='/physical_device:GPU:0', device_type='GPU')]

二. 数据处理

包括数据加载和归一化两步

import tensorflow as tf
from tensorflow.keras import datasets, layers, models
import matplotlib.pyplot as plt

(train_images, train_labels), (test_images, test_labels) = datasets.cifar10.load_data()

# 将像素的值标准化至0到1的区间内。
train_images, test_images = train_images / 255.0, test_images / 255.0
# 打印shape
train_images.shape,test_images.shape,train_labels.shape,test_labels.shape
# ((50000, 32, 32, 3), (10000, 32, 32, 3), (50000, 1), (10000, 1))

数据可视化

class_names = ['airplane', 'automobile', 'bird', 'cat', 'deer','dog', 'frog', 'horse', 'ship', 'truck']

plt.figure(figsize=(20,10))
for i in range(20):
    plt.subplot(5,10,i+1)
    plt.xticks([])
    plt.yticks([])
    plt.grid(False)
    plt.imshow(train_images[i], cmap=plt.cm.binary)
    plt.xlabel(class_names[train_labels[i][0]])
plt.show()

image.png

三. 模型结构

model = models.Sequential([
    layers.Conv2D(32, (3, 3), activation='relu', input_shape=(32, 32, 3)), #卷积层1,卷积核3*3
    layers.MaxPooling2D((2, 2)),                   #池化层1,2*2采样
    layers.Conv2D(64, (3, 3), activation='relu'),  #卷积层2,卷积核3*3
    layers.MaxPooling2D((2, 2)),                   #池化层2,2*2采样
    layers.Conv2D(64, (3, 3), activation='relu'),  #卷积层3,卷积核3*3
    
    layers.Flatten(),                      #Flatten层,连接卷积层与全连接层
    layers.Dense(64, activation='relu'),   #全连接层,特征进一步提取
    layers.Dense(10)                       #输出层,输出预期结果
])

model.summary()  # 打印网络结构

image.png

四. 模型训练

模型训练前先编译,先调用model.compile()再调用model.fit()

model.compile(optimizer='adam',
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
              metrics=['accuracy'])
history = model.fit(train_images, train_labels, epochs=10, 
                    validation_data=(test_images, test_labels))

训练日志如下

image.png

五. 模型测试

如图,模型预测正确

image.png