1、安装anaconda
清华镜像源下载anaconda : mirrors.tuna.tsinghua.edu.cn/anaconda/ar…
配置环境变量
D:\dev\anaconda3-2024.10.1
D:\dev\anaconda3-2024.10.1\Scripts
D:\dev\anaconda3-2024.10.1\Library\bin
D:\dev\anaconda3-2024.10.1\Library\mingw-w64\bin
检查是否安装成功
conda --version
配置anaconda下载源 在 C:\Users\你的电脑用户名\ 下有一个 .condarc 文件,如果没有找到 .condarc ,输入以下命令
conda config --set show_channel_urls yes
打开 .condarc 复制下面内容保存
envs_dirs:
- D:\dev\anaconda3-store\envs #这是创建的虚拟环境路径,更改为自己的路径
pkgs_dirs:
- D:\dev\anaconda3-store\pkgs #这是anaconda的pkgs包路径,更改为自己的路径
channels:
- defaults
custom_channels:
conda-forge: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
msys2: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
bioconda: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
menpo: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
pytorch: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
simpleitk: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
default_channels:
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/msys2
show_channel_urls: True
检查配置
C:\Users\laibin>conda info
active environment : None
user config file : C:\Users\laibin\.condarc
populated config files : D:\dev\anaconda3-2024.10.1\.condarc
C:\Users\laibin\.condarc
conda version : 24.9.2
conda-build version : 24.9.0
python version : 3.12.7.final.0
solver : libmamba (default)
virtual packages : __archspec=1=skylake
__conda=24.9.2=0
__cuda=12.5=0
__win=0=0
base environment : D:\dev\anaconda3-2024.10.1 (read only)
conda av data dir : D:\dev\anaconda3-2024.10.1\etc\conda
conda av metadata url : None
channel URLs : https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/win-64
https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/noarch
https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r/win-64
https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r/noarch
https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/msys2/win-64
https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/msys2/noarch
https://repo.anaconda.com/pkgs/main/win-64
https://repo.anaconda.com/pkgs/main/noarch
https://repo.anaconda.com/pkgs/r/win-64
https://repo.anaconda.com/pkgs/r/noarch
https://repo.anaconda.com/pkgs/msys2/win-64
https://repo.anaconda.com/pkgs/msys2/noarch
package cache : D:\dev\anaconda3-store\pkgs
envs directories : D:\dev\anaconda3-store\envs
C:\Users\laibin\.conda\envs
D:\dev\anaconda3-2024.10.1\envs
C:\Users\laibin\AppData\Local\conda\conda\envs
platform : win-64
user-agent : conda/24.9.2 requests/2.32.3 CPython/3.12.7 Windows/11 Windows/10.0.22631 solver/libmamba conda-libmamba-solver/24.9.0 libmambapy/1.5.8 aau/0.4.4 c/. s/.
administrator : False
netrc file : None
offline mode : False
2、安装pytorch
创建一个虚拟环境
conda create --name pytorch-env python=3.12
conda activate pytorch-env
进入 pytorch 官网 : pytorch.ac.cn/ ,选择自己下载的版本
在 pytorch-env 环境下载 pytorch
conda install pytorch torchvision torchaudio pytorch-cuda=12.4 -c pytorch -c nvidia
下载完毕,验证是否可用,切换到 pytorch-env 环境中
import torch
if __name__ == '__main__':
print(torch.__version__)
print(f"CUDA available: {torch.cuda.is_available()}")
print(f"Current device: {torch.cuda.current_device()}")
print(f"device name: {torch.cuda.get_device_name()}")
# --------输出
#2.5.1
#CUDA available: True
#Current device: 0
#device name: NVIDIA GeForce RTX 4070 Laptop GPU
3、运行yolo5
下载 yolo5 源码 : github.com/ultralytics…
修改 models/experimental.py ,使用GPU
model = Ensemble()
for w in weights if isinstance(weights, list) else [weights]:
# ckpt = torch.load(attempt_download(w), map_location="cpu") # load
ckpt = torch.load(attempt_download(w), map_location="cuda:0") # 使用 GPU
ckpt = (ckpt.get("ema") or ckpt["model"]).to(device).float() # FP32 model
# Model compatibility updates
if not hasattr(ckpt, "stride"):
ckpt.stride = torch.tensor([32.0])
if hasattr(ckpt, "names") and isinstance(ckpt.names, (list, tuple)):
ckpt.names = dict(enumerate(ckpt.names)) # convert to dict
model.append(ckpt.fuse().eval() if fuse and hasattr(ckpt, "fuse") else ckpt.eval()) # model in eval mode
运行 detect.py ,结果保存在 runs/detect/ 目录下