模型输入Prompt、解析输出

168 阅读4分钟

课程笔记-2模型的输入与输出 PART 1 部分

提示模板

我们可以把对模型的使用过程拆解成三块,分别是输入提示(对应图中的Format)、调用模型(对应图中的Predict)和输出解析(对应图中的Parse)。这三块形成了一个整体,因此在LangChain中这个过程被统称为 Model I/O(Input/Output)。

在模型 I/O的每个环节,LangChain都为咱们提供了模板和工具,快捷地形成调用各种语言模型的接口。

  1. 提示模板:使用模型的第一个环节是把提示信息输入到模型中,针对特定的任务和应用调整不同的输入。
  2. 语言模型:LangChain允许你通过通用接口来调用语言模型。这意味着无论你要使用的是哪种语言模型,都可以通过同一种方式进行调用,这样就提高了灵活性和便利性。
  3. 输出解析:LangChain还提供了从模型输出中提取信息的功能。通过输出解析器,你可以精确地从模型的输出中获取需要的信息,而不需要处理冗余或不相关的数据,更重要的是还可以把大模型给回的非结构化文本,转换成程序可以处理的结构化数据。

这个提示模板的生成方式:

# 导入LangChain中的提示模板
from langchain.prompts import PromptTemplate
# 创建原始模板
template = """您是一位专业的鲜花店文案撰写员。\n
对于售价为 {price} 元的 {flower_name} ,您能提供一个吸引人的简短描述吗?
"""
# 根据原始模板创建LangChain提示模板
prompt = PromptTemplate.from_template(template) 
# 打印LangChain提示模板的内容
print(prompt)

input_variables=['flower_name', 'price'] 
output_parser=None partial_variables={} 
template='/\n您是一位专业的鲜花店文案撰写员。
\n对于售价为 {price} 元的 {flower_name} ,您能提供一个吸引人的简短描述吗?\n'
template_format='f-string' 
validate_template=True

代码中的from_template是一个类方法,它允许我们直接从一个字符串模板中创建一个PromptTemplate对象。打印出这个PromptTemplate对象,你可以看到这个对象中的信息包括输入的变量(在这个例子中就是 flower_name 和 price)、输出解析器(这个例子中没有指定)、模板的格式(这个例子中为'f-string')、是否验证模板(这个例子中设置为 True)。

语言模型

LangChain中支持的模型有三大类。

  1. 大语言模型(LLM) ,这些模型将文本字符串作为输入,并返回文本字符串作为输出。
  2. 聊天模型(Chat Model),主要代表Open AI的ChatGPT系列模型。
  3. 文本嵌入模型(Embedding Model),这些模型将文本作为输入并返回浮点数列表,也就是Embedding。

我们将调用语言模型,让模型帮我们写文案,并且返回文案的结果。

# 设置OpenAI API Key
import os
os.environ["OPENAI_API_KEY"] = '你的Open AI API Key'

# 导入LangChain中的OpenAI模型接口
from langchain_openai import OpenAI
# 创建模型实例
model = OpenAI(model_name='gpt-3.5-turbo-instruct')
# 输入提示
input = prompt.format(flower_name=["玫瑰"], price='50')
# 得到模型的输出
output = model.invoke(input)
# 打印输出内容
print(output)  


复用提示模板,我们可以同时生成多个鲜花的文案。


# 导入LangChain中的提示模板
from langchain import PromptTemplate
# 创建原始模板
template = """您是一位专业的鲜花店文案撰写员。\n
对于售价为 {price} 元的 {flower_name} ,您能提供一个吸引人的简短描述吗?
"""
# 根据原始模板创建LangChain提示模板
prompt = PromptTemplate.from_template(template) 
# 打印LangChain提示模板的内容
print(prompt)

# 设置OpenAI API Key
import os
os.environ["OPENAI_API_KEY"] = '你的Open AI API Key'

# 导入LangChain中的OpenAI模型接口
from langchain import OpenAI
# 创建模型实例
model = OpenAI(model_name='gpt-3.5-turbo-instruct')

# 多种花的列表
flowers = ["玫瑰", "百合", "康乃馨"]
prices = ["50", "30", "20"]

# 生成多种花的文案
for flower, price in zip(flowers, prices):
    # 使用提示模板生成输入
    input_prompt = prompt.format(flower_name=flower, price=price)

    # 得到模型的输出
    output = model.invoke(input_prompt)

    # 打印输出内容
    print(output)


输出结果

这支玫瑰,深邃的红色,传递着浓浓的深情与浪漫,令人回味无穷! 百合:美丽的花朵,多彩的爱恋!30元让你拥有它! 康乃馨—20元,象征爱的祝福,送给你最真挚的祝福。