笔记

168 阅读6分钟

Day9

LLMChain, SequentialChain, TransformChain, RouterChain

Day10

路由链

# 构建路由链
from langchain.chains.router.llm_router import LLMRouterChain, RouterOutputParser
from langchain.chains.router.multi_prompt_prompt import MULTI_PROMPT_ROUTER_TEMPLATE as RounterTemplate
destinations = [f"{p['key']}: {p['description']}" for p in prompt_infos]
router_template = RounterTemplate.format(destinations="\n".join(destinations))
print("路由模板:\n",router_template)
router_prompt = PromptTemplate(
    template=router_template,
    input_variables=["input"],
    output_parser=RouterOutputParser(),)
print("路由提示:\n",router_prompt)
router_chain = LLMRouterChain.from_llm(llm, 
                                       router_prompt,
                                       verbose=True)

构建多提示链

最后,我们使用MultiPromptChain类把前几个链整合在一起,实现路由功能。这个MultiPromptChain类是一个多路选择链,它使用一个LLM路由器链在多个提示之间进行选择。

MultiPromptChain中有三个关键元素。

  • router_chain(类型RouterChain):这是用于决定目标链和其输入的链。当给定某个输入时,这个router_chain决定哪一个destination_chain应该被选中,以及传给它的具体输入是什么。
  • destination_chains(类型Mapping[str, LLMChain]):这是一个映射,将名称映射到可以将输入路由到的候选链。例如,你可能有多种处理文本输入的方法(或“链”),每种方法针对特定类型的问题。destination_chains可以是这样一个字典:{'weather': weather_chain, 'news': news_chain}。在这里,weather_chain可能专门处理与天气相关的问题,而news_chain处理与新闻相关的问题。
  • default_chain(类型LLMChain):当 router_chain 无法将输入映射到destination_chains中的任何一个链时,LLMChain 将使用此默认链。这是一个备选方案,确保即使路由器不能决定正确的链,也总有一个链可以处理输入。

它的工作流程如下:

  1. 输入首先传递给router_chain。
  2. router_chain根据某些标准或逻辑决定应该使用哪一个destination_chain。
  3. 输入随后被路由到选定的destination_chain,该链进行处理并返回结果。
  4. 如果router_chain不能决定正确的destination_chain,则输入会被传递给default_chain。

这样,MultiPromptChain就为我们提供了一个在多个处理链之间动态路由输入的机制,以得到最相关或最优的输出。

Day11-记忆

记忆机制就是把history作为上下文让LLM进行回答

ConversationBufferMemory

在LangChain中,通过ConversationBufferMemory(缓冲记忆)可以实现最简单的记忆机制。

下面,我们就在对话链中引入ConversationBufferMemory。

from langchain import OpenAI
from langchain.chains import ConversationChain
from langchain.chains.conversation.memory import ConversationBufferMemory

# 初始化大语言模型
llm = OpenAI(
    temperature=0.5,
    model_name="gpt-3.5-turbo-instruct")

# 初始化对话链
conversation = ConversationChain(
    llm=llm,
    memory=ConversationBufferMemory()
)

# 第一天的对话
# 回合1
conversation("我姐姐明天要过生日,我需要一束生日花束。")
print("第一次对话后的记忆:", conversation.memory.buffer)

ConversationBufferWindowMemory

说到记忆,我们人类的大脑也不是无穷无尽的。所以说,有的时候事情太多,我们只能把有些遥远的记忆抹掉。毕竟,最新的经历最鲜活,也最重要。

ConversationBufferWindowMemory 是缓冲窗口记忆,它的思路就是只保存最新最近的几次人类和AI的互动。因此,它在之前的“缓冲记忆”基础上增加了一个窗口值 k。这意味着我们只保留一定数量的过去互动,然后“忘记”之前的互动。

ConversationSummaryMemory

模型在回答新问题的时候,对之前的问题进行了总结性的重述

每轮对话后,对该轮对话进行汇总

ConversationSummaryBufferMemory

它是通过max_token_limit这个参数做到这一点的。当最新的对话文字长度在300字之内的时候,LangChain会记忆原始对话内容;当对话文字超出了这个参数的长度,那么模型就会把所有超过预设长度的内容进行总结,以节省Token数量。

Day12-代理

ReAct框架

这里我要请你思考一下:如果你接到一个新任务,你将如何做出决策并完成下一步的行动?

比如说,你在运营花店的过程中,经常会经历天气变化而导致的鲜花售价变化,那么,每天早上你会如何为你的鲜花定价?

也许你会告诉我,我会去Google上面查一查今天的鲜花成本价啊(行动),也就是我预计的进货的价格,然后我会根据这个价格的高低(观察),来确定我要加价多少(思考),最后计算出一个售价(行动)!

你看,在这个简单的例子中,你有观察、有思考,然后才会具体行动。这里的观察和思考,我们统称为推理(Reasoning)过程,推理指导着你的行动(Acting)。

我们今天要讲的 ReAct 框架的灵感正是来自“行动”和“推理”之间的协同作用,这种协同作用使得咱们人类能够学习新任务并做出决策或推理。这个框架,也是大模型能够作为“智能代理”,自主、连续、交错地生成推理轨迹和任务特定操作的理论基础。

Web-search package

在开始之前,有一个准备工作,就是你需要在 serpapi.com 注册一个账号,并且拿到你的 SERPAPI_API_KEY,这个就是我们要为大模型提供的 Google 搜索工具。

先安装SerpAPI的包。

pip install google-search-results

Day13

Agent, Tools, Toolkits, AgentExecutor(代理执行器)

  1. 工具(Tools):工具是代理调用的函数。这里有两个重要的考虑因素:一是让代理能访问到正确的工具,二是以最有帮助的方式描述这些工具。如果你没有给代理提供正确的工具,它将无法完成任务。如果你没有正确地描述工具,代理将不知道如何使用它们。LangChain提供了一系列的工具,同时你也可以定义自己的工具。

  2. 工具包(Toolkits):工具包是一组用于完成特定目标的彼此相关的工具,每个工具包中包含多个工具。比如LangChain的Office365工具包中就包含连接Outlook、读取邮件列表、发送邮件等一系列工具。当然LangChain中还有很多其他工具包供你使用。

  3. 代理执行器(AgentExecutor):代理执行器是代理的运行环境,它调用代理并执行代理选择的操作。执行器也负责处理多种复杂情况,包括处理代理选择了不存在的工具的情况、处理工具出错的情况、处理代理产生的无法解析成工具调用的输出的情况,以及在代理决策和工具调用进行观察和日志记录。

Day14

Structured Tool Chat(结构化工具对话)代理、Self-Ask with Search(自主询问搜索)代理、Plan and execute(计划与执行) 代理