青训营

36 阅读2分钟

从 1950 年代出现计算机以来,人们就已经开始着手研究让计算机辅助人类理解、处理自然语言,这也是 NLP 这一领域的发展目标,最著名的当属图灵测试。

1950年,计算机之父——艾伦·图灵(Alan Turing)介绍了一项测试,以检查机器是否能像人类一样思考,这项测试称为图灵测试。它具体的测试方法和目前 ChatGPT 的方式一模一样,即构建一个计算机对话系统,一个人和被测试的模型互相进行对话,如果这个人无法辨别对方究竟是机器模型还是另一个人,就说明该模型通过了图灵测试,计算机是智能的。

长久以来,图灵测试都被学界认为是难以攀登的巅峰。正因如此,NLP 也被称为人工智能皇冠上的明珠。而 ChatGPT 所能够做的工作,已经远远超出了聊天机器人这个范畴,它能够根据用户的指令写文章,回答技术问题,做数学题,做外文翻译,玩文字游戏等等。所以,某种程度上,ChatGPT 已经摘下了这颗皇冠上的明珠。ChatGPT 的工作形式非常简单,用户向 ChatGPT 提问任何一个问题,模型都会做出解答。 其中,用户的输入和模型的输出都是文字形式。一次用户输入和一次模型对应的输出,叫做一轮对话。我们可以把 ChatGPT 的模型抽象成如下流程:

1-1.png

此外,ChatGPT 也可以回答用户的连续提问,也就是多轮对话,多轮对话之间是有信息关联的。其具体的形式也非常简单,第二次用户输入时,系统默认把第一次的输入、输出信息都拼接在一起,供 ChatGPT 参考上次对话的信息。

1-2.png

如果用户与 ChatGPT 对话的轮次过多,一般来讲模型仅会保留最近几轮对话的信息,此前的对话信息将被遗忘。

1-3.png

ChatGPT 在接收到用户的提问输入后,输出的文字并不是一口气直接生成的,而是一个字、一个字生成的,这种逐字生成,即生成式(Generative) 。如下图所示。

当用户输入问句:“你喜欢苹果还是香蕉?”,ChatGPT 接收到数据之后,首先会生成一个“我”字,然后,模型会综合用户的问句和生成的“我”字,继续生成下一个字“喜”。以此类推,直到生成一个完整的句子“我喜欢苹果。”。