AI刷题 83 小S的货船租赁冒险 | 豆包Marscode AI刷题

100 阅读2分钟

问题描述

小S在码头租用货船,有 Q 种不同类型的货船可供选择。每种货船有固定的数量 m[i]、租赁成本 v[i] 和最大载货量 w[i]。小S希望在预算 V 元内,租用能够承载最大总货物的货船组合。每种货船的具体信息包括数量、租赁价格和载货量。小S需要你帮忙计算在给定预算下,她能租用的货船的最大总载货量是多少。

  • Q: 货船的种类数量。
  • V: 李华可用的总预算(单位:元)。
  • ships: 一个列表,其中每个元素是一个元组 [m[i], v[i], w[i]],分别表示第 i 种货船的数量、租赁价格和每艘货船的最大载货量。

测试样例

样例1:

输入:Q = 2,V = 10,ships = [[2, 3, 2], [3, 2, 10]]
输出:32

样例2:

输入:Q = 3,V = 50,ships = [[5, 10, 20], [2, 20, 30], [3, 15, 25]]
输出:100

样例3:

输入:Q = 1,V = 100,ships = [[10, 5, 50]]
输出:500

样例4:

输入:Q = 4,V = 100,ships = [[1, 100, 200], [2, 50, 100], [3, 33, 66], [4, 25, 50]]
输出:200

样例5:

输入:Q = 2,V = 300,ships = [[100, 1, 1], [50, 5, 10]]
输出:550

实际上,这是一道无穷背包问题的板子题目。采用动态规划的方法就能解决。注意动态规划的过程中前后遍历的顺序问题,在无穷背包问题中应该正序遍历。

代码如下:

def solution(Q, V, ships):
    ships = [[]] + ships
    f = [0] * (V + 1)
    for i in range(1, Q + 1):
        for j in range(V, ships[i][1] - 1, -1):
            for k in range(1, ships[i][0] + 1):
                if k * ships[i][1] > j: break
                f[j] = max(f[j], f[j - k * ships[i][1]] + k * ships[i][2])
    
    return f[V]

if __name__ == "__main__":
    #  You can add more test cases here
    ships = [[2, 3, 2], [3, 2, 10]]
    ships2 = [[30, 141, 47], [9, 258, 12], [81, 149, 13], [91, 236, 6], [27, 163, 74], [34, 13, 58], [61, 162, 1], [80, 238, 29], [36, 264, 28], [36, 250, 2], [70, 214, 31], [39, 116, 39], [83, 287, 4], [61, 269, 94], [23, 187, 46], [78, 33, 29], [46, 151, 2], [71, 249, 1], [67, 76, 85], [72, 239, 17], [61, 256, 49], [48, 216, 73], [39, 49, 74]]
    print(solution(2, 10, ships) == 32)
    print(solution(23, 400, ships2) == 1740)