RAG
RAG工作原理
向量数据库Vector-DB
发展进程
优化方法
RAG VS Fine-tuning
LlamaIndex
LlamaIndex + RAG
作业
- 两个任务的脚本仅model配置部分存在少量区别
1. 浦语 API
1.1 准备环境
- 安装环境
conda create -n llamaindex python=3.10
conda activate llamaindex
# 安装python依赖
pip install einops==0.7.0 protobuf==5.26.1
# 安装 Llamaindex和相关依赖
conda activate llamaindex
pip install llama-index==0.11.20
pip install llama-index-llms-replicate==0.3.0
pip install llama-index-llms-openai-like==0.2.0
pip install llama-index-embeddings-huggingface==0.3.1
pip install llama-index-embeddings-instructor==0.2.1
pip install torch==2.5.0 torchvision==0.20.0 torchaudio==2.5.0 --index-url https://download.pytorch.org/whl/cu121
相对轻量、支持中文且效果较好的源词向量模型
cd ~
mkdir llamaindex_demo
mkdir model
cd ~/llamaindex_demo
touch download_hf.py
import os
# 设置环境变量
os.environ['HF_ENDPOINT'] = 'https://hf-mirror.com'
# 下载模型
os.system('huggingface-cli download --resume-download sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 --local-dir /root/model/sentence-transformer')
cd /root/llamaindex_demo
conda activate llamaindex
python download_hf.py
- modelscope下载:
apt-get install git-lfs
git lfs install
git clone https://www.modelscope.cn/Ceceliachenen/paraphrase-multilingual-MiniLM-L12-v2.git
# 这里通过码云下载
cd /root
git clone https://gitee.com/yzy0612/nltk_data.git --branch gh-pages
cd nltk_data
mv packages/* ./
cd tokenizers
unzip punkt.zip
cd ../taggers
unzip averaged_perceptron_tagger.zip
2. 实操
浦语官网和硅基流动都提供了InternLM的类OpenAI接口格式的免费的 API,可以访问以下两个了解两个 API 的使用方法和 Key。
浦语官方 API:internlm.intern-ai.org.cn/api/documen… 硅基流动:cloud.siliconflow.cn/models?mfs=…
- 运行以下指令,新建一个python文件
cd ~/llamaindex_demo
touch test_internlm.py
- 打开test_internlm.py 贴入以下代码
from openai import OpenAI
import os
base_url = "https://internlm-chat.intern-ai.org.cn/puyu/api/v1/"
# api_key = "sk-请填写准确的 token!"
api_key = os.getenv('api_key')
model="internlm2.5-latest"
# base_url = "https://api.siliconflow.cn/v1"
# api_key = "sk-请填写准确的 token!"
# model="internlm/internlm2_5-7b-chat"
client = OpenAI(
api_key=api_key ,
base_url=base_url,
)
chat_rsp = client.chat.completions.create(
model=model,
messages=[{"role": "user", "content": "xtuner是什么?"}],
)
for choice in chat_rsp.choices:
print(choice.message.content)
- 之后运行
conda activate llamaindex
cd ~/llamaindex_demo/
python test_internlm.py
- 运行如下
- 获取知识库
cd ~/llamaindex_demo
mkdir data
cd data
git clone https://github.com/InternLM/xtuner.git
mv xtuner/README_zh-CN.md ./
- 运行以下指令,新建一个python文件
cd ~/llamaindex_demo
touch llamaindex_RAG.py
- 打开llamaindex_RAG.py贴入以下代码
import os
os.environ['NLTK_DATA'] = '/root/nltk_data'
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader
from llama_index.core.settings import Settings
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_index.legacy.callbacks import CallbackManager
from llama_index.llms.openai_like import OpenAILike
# Create an instance of CallbackManager
callback_manager = CallbackManager()
api_base_url = "https://internlm-chat.intern-ai.org.cn/puyu/api/v1/"
model = "internlm2.5-latest"
api_key = os.getenv('api_key')
# api_base_url = "https://api.siliconflow.cn/v1"
# model = "internlm/internlm2_5-7b-chat"
# api_key = "请填写 API Key"
llm =OpenAILike(model=model, api_base=api_base_url, api_key=api_key, is_chat_model=True,callback_manager=callback_manager)
#初始化一个HuggingFaceEmbedding对象,用于将文本转换为向量表示
embed_model = HuggingFaceEmbedding(
#指定了一个预训练的sentence-transformer模型的路径
model_name="/root/model/sentence-transformer"
)
#将创建的嵌入模型赋值给全局设置的embed_model属性,
#这样在后续的索引构建过程中就会使用这个模型。
Settings.embed_model = embed_model
#初始化llm
Settings.llm = llm
#从指定目录读取所有文档,并加载数据到内存中
documents = SimpleDirectoryReader("/root/llamaindex_demo/data").load_data()
#创建一个VectorStoreIndex,并使用之前加载的文档来构建索引。
# 此索引将文档转换为向量,并存储这些向量以便于快速检索。
index = VectorStoreIndex.from_documents(documents)
# 创建一个查询引擎,这个引擎可以接收查询并返回相关文档的响应。
query_engine = index.as_query_engine()
response = query_engine.query("xtuner是什么?")
print(response)
- 使用新的知识库
conda activate llamaindex
cd ~/llamaindex_demo/
python llamaindex_RAG.py
- 运行结果(使用LlamaIndex RAG(仅API)之后)如下:
- 使用LlamaIndex web
# 安装依赖
pip install streamlit==1.39.0
cd ~/llamaindex_demo
touch app.py
# app.py
import streamlit as st
import os
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, Settings
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_index.legacy.callbacks import CallbackManager
from llama_index.llms.openai_like import OpenAILike
# Create an instance of CallbackManager
callback_manager = CallbackManager()
api_base_url = "https://internlm-chat.intern-ai.org.cn/puyu/api/v1/"
model = "internlm2.5-latest"
api_key = os.getenv('api_key')
# api_base_url = "https://api.siliconflow.cn/v1"
# model = "internlm/internlm2_5-7b-chat"
# api_key = "请填写 API Key"
llm =OpenAILike(model=model, api_base=api_base_url, api_key=api_key, is_chat_model=True,callback_manager=callback_manager)
st.set_page_config(page_title="llama_index_demo", page_icon="🦜🔗")
st.title("llama_index_demo")
# 初始化模型
@st.cache_resource
def init_models():
embed_model = HuggingFaceEmbedding(
model_name="/root/model/paraphrase-multilingual-MiniLM-L12-v2"
)
Settings.embed_model = embed_model
#用初始化llm
Settings.llm = llm
documents = SimpleDirectoryReader("/root/llamaindex_demo/data").load_data()
index = VectorStoreIndex.from_documents(documents)
query_engine = index.as_query_engine()
return query_engine
# 检查是否需要初始化模型
if 'query_engine' not in st.session_state:
st.session_state['query_engine'] = init_models()
def greet2(question):
response = st.session_state['query_engine'].query(question)
return response
# Store LLM generated responses
if "messages" not in st.session_state.keys():
st.session_state.messages = [{"role": "assistant", "content": "你好,我是你的助手,有什么我可以帮助你的吗?"}]
# Display or clear chat messages
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.write(message["content"])
def clear_chat_history():
st.session_state.messages = [{"role": "assistant", "content": "你好,我是你的助手,有什么我可以帮助你的吗?"}]
st.sidebar.button('Clear Chat History', on_click=clear_chat_history)
# Function for generating LLaMA2 response
def generate_llama_index_response(prompt_input):
return greet2(prompt_input)
# User-provided prompt
if prompt := st.chat_input():
st.session_state.messages.append({"role": "user", "content": prompt})
with st.chat_message("user"):
st.write(prompt)
# Gegenerate_llama_index_response last message is not from assistant
if st.session_state.messages[-1]["role"] != "assistant":
with st.chat_message("assistant"):
with st.spinner("Thinking..."):
response = generate_llama_index_response(prompt)
placeholder = st.empty()
placeholder.markdown(response)
message = {"role": "assistant", "content": response}
st.session_state.messages.append(message)
# 运行该文件,即可启动网页版
streamlit run app.py
2. 本地部署InternLM
2.1 准备环境
- python基础依赖包
pip install einops==0.7.0 protobuf==5.26.1
- 安装 Llamaindex 与 Pytorch
# 安装 Llamaindex 和相关的包:
conda activate llamaindex
pip install llama-index==0.10.38 llama-index-llms-huggingface==0.2.0 "transformers[torch]==4.41.1" "huggingface_hub[inference]==0.23.1" huggingface_hub==0.23.1 sentence-transformers==2.7.0 sentencepiece==0.2.0
# 安装 LlamaIndex 词嵌入向量依赖:
pip install llama-index-embeddings-huggingface==0.2.0 llama-index-embeddings-instructor==0.1.3
# 在这一步请确定llama-index-embeddings-huggingface安装成功
# 如果存在not found错误,请重新安装
# pip install llama-index-embeddings-huggingface==0.2.0
# 确保 huggingface_hub==0.23.1
# 安装 Pytorch
conda install pytorch==2.0.1 torchvision==0.15.2 torchaudio==2.0.2 pytorch-cuda=11.7 -c pytorch -c nvidia
# 验证pytorch和cuda版本
import torch
print(torch.__version__) # 应输出类似 '2.0.1'
print(torch.version.cuda) # 应输出 '11.7'
print(torch.cuda.is_available())# 应输出 True
关于 LlamaIndex 与 Pytorch 安装顺序的说明
关于本次实验的运行环境,我们建议的是如上 先安装 Llamaindex ,再安装 Pytorch。
“先安装 Pytorch 再安装 Llamaindex”存在的问题是:匹配CUDA 11.7的torch安装在前,但是其后安装 LLamaIndex 相关的指令会稳定触发torch的升级到最新版本,而新版本的PyTorch (2.5.1) 默认使用CUDA 12.4,导致 Pytorch 版本与 CUDA版本不匹配。
这样,当进行到模型推理的步骤时,就会报错:
RuntimeError: CUDA error: CUBLAS_STATUS_NOT_INITIALIZED when calling cublasCreate(handle) 这时候就需要再次重新安装正确的torch:
conda install pytorch==2.0.1 torchvision==0.15.2 torchaudio==2.0.2 pytorch-cuda=11.7 -c pytorch -c nvidia 导致操作步骤的繁杂与冗余。
-
LlamaIndex HuggingFaceLLM
5.1. 运行以下指令,将share文件夹中已经存在的 InternLM2 1.8B 软连接出来
cd ~/model
ln -s /root/share/new_models/Shanghai_AI_Laboratory/internlm2-chat-1_8b/ ./
5.2. 运行以下指令,新建一个 python 文件
cd ~/llamaindex_demo
touch llamaindex_internlm.py
5.3. 打开 llamaindex_internlm.py 贴入以下代码
from llama_index.llms.huggingface import HuggingFaceLLM
from llama_index.core.llms import ChatMessage
llm = HuggingFaceLLM(
model_name="/root/model/internlm2-chat-1_8b",
tokenizer_name="/root/model/internlm2-chat-1_8b",
model_kwargs={"trust_remote_code":True},
tokenizer_kwargs={"trust_remote_code":True}
)
rsp = llm.chat(messages=[ChatMessage(content="xtuner是什么?")])
print(rsp)
5.4. 之后运行
conda activate llamaindex
cd ~/llamaindex_demo/
python llamaindex_internlm.py
结果如下:
LlamaIndex RAG
6.1. 运行以下命令,获取知识库
cd ~/llamaindex_demo
mkdir data
cd data
git clone https://github.com/InternLM/xtuner.git
mv xtuner/README_zh-CN.md ./
6.2. 运行以下指令,新建一个 python 文件
cd ~/llamaindex_demo
touch llamaindex_RAG.py
6.3. 打开llamaindex_RAG.py贴入以下代码
- 实现将6.1的readme文件完成向量化,导入模型
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, Settings
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_index.llms.huggingface import HuggingFaceLLM
#初始化一个HuggingFaceEmbedding对象,用于将文本转换为向量表示
embed_model = HuggingFaceEmbedding(
#指定了一个预训练的sentence-transformer模型的路径
model_name="/root/model/sentence-transformer"
)
#将创建的嵌入模型赋值给全局设置的embed_model属性,
#这样在后续的索引构建过程中就会使用这个模型。
Settings.embed_model = embed_model
llm = HuggingFaceLLM(
model_name="/root/model/internlm2-chat-1_8b",
tokenizer_name="/root/model/internlm2-chat-1_8b",
model_kwargs={"trust_remote_code":True},
tokenizer_kwargs={"trust_remote_code":True}
)
#设置全局的llm属性,这样在索引查询时会使用这个模型。
Settings.llm = llm
#从指定目录读取所有文档,并加载数据到内存中
documents = SimpleDirectoryReader("/root/llamaindex_demo/data").load_data()
#创建一个VectorStoreIndex,并使用之前加载的文档来构建索引。
# 此索引将文档转换为向量,并存储这些向量以便于快速检索。
index = VectorStoreIndex.from_documents(documents)
# 创建一个查询引擎,这个引擎可以接收查询并返回相关文档的响应。
query_engine = index.as_query_engine()
response = query_engine.query("xtuner是什么?")
print(response)
- 重新执行1.7的指令即可发现知识库(
README_zh-CN.md)已导入,从而获取到想要的内容
- 使用LlamaIndex web
# 安装依赖
pip install streamlit==1.39.0
cd ~/llamaindex_demo
touch app.py
# app.py
import streamlit as st
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, Settings
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_index.llms.huggingface import HuggingFaceLLM
st.set_page_config(page_title="llama_index_demo", page_icon="🦜🔗")
st.title("llama_index_demo")
# 初始化模型
@st.cache_resource
def init_models():
embed_model = HuggingFaceEmbedding(
model_name="/root/model/sentence-transformer"
)
Settings.embed_model = embed_model
llm = HuggingFaceLLM(
model_name="/root/model/internlm2-chat-1_8b",
tokenizer_name="/root/model/internlm2-chat-1_8b",
model_kwargs={"trust_remote_code": True},
tokenizer_kwargs={"trust_remote_code": True}
)
Settings.llm = llm
documents = SimpleDirectoryReader("/root/llamaindex_demo/data").load_data()
index = VectorStoreIndex.from_documents(documents)
query_engine = index.as_query_engine()
return query_engine
# 检查是否需要初始化模型
if 'query_engine' not in st.session_state:
st.session_state['query_engine'] = init_models()
def greet2(question):
response = st.session_state['query_engine'].query(question)
return response
# Store LLM generated responses
if "messages" not in st.session_state.keys():
st.session_state.messages = [{"role": "assistant", "content": "你好,我是你的助手,有什么我可以帮助你的吗?"}]
# Display or clear chat messages
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.write(message["content"])
def clear_chat_history():
st.session_state.messages = [{"role": "assistant", "content": "你好,我是你的助手,有什么我可以帮助你的吗?"}]
st.sidebar.button('Clear Chat History', on_click=clear_chat_history)
# Function for generating LLaMA2 response
def generate_llama_index_response(prompt_input):
return greet2(prompt_input)
# User-provided prompt
if prompt := st.chat_input():
st.session_state.messages.append({"role": "user", "content": prompt})
with st.chat_message("user"):
st.write(prompt)
# Gegenerate_llama_index_response last message is not from assistant
if st.session_state.messages[-1]["role"] != "assistant":
with st.chat_message("assistant"):
with st.spinner("Thinking..."):
response = generate_llama_index_response(prompt)
placeholder = st.empty()
placeholder.markdown(response)
message = {"role": "assistant", "content": response}
st.session_state.messages.append(message)
# 运行该文件,即可启动网页版
streamlit run app.py
- 结果如下:
3. Streamlit+LlamaIndex+浦语API的 Space 部署到 Hugging Face
-
space SDK选中 Streamlit
-
git clone选
ssh方式,https方式需科学上网 -
用于模型启动的
app.py代码如下:
import os
import streamlit as st
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, Settings
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_index.legacy.callbacks import CallbackManager
from llama_index.llms.openai_like import OpenAILike
# 配置 API
api_base_url = "https://internlm-chat.intern-ai.org.cn/puyu/api/v1/"
model = "internlm2.5-latest"
api_key = os.getenv("api_key")
# 检查 API 密钥
if not api_key:
st.error("API key is not set. Please configure the environment variable 'api_key'.")
st.stop()
# Streamlit 页面配置
st.set_page_config(page_title="LlamaIndex Demo", page_icon="🦜🔗")
st.title("LlamaIndex Demo")
# 初始化查询引擎
@st.cache_resource
def init_query_engine():
try:
# 确保数据路径存在
data_path = "./data"
if not os.path.exists(data_path) or not os.listdir(data_path):
st.error(f"Data directory '{data_path}' is missing or empty.")
st.stop()
# 使用 HuggingFaceEmbedding 替代 SentenceTransformer
embed_model = HuggingFaceEmbedding(
model_name="sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2"
)
# 创建CallbackManager实例
callback_manager = CallbackManager()
# 初始化 OpenAILike 模型
llm = OpenAILike(
model=model,
api_base=api_base_url,
api_key=api_key,
is_chat_model=True,
callback_manager=callback_manager
)
Settings.embed_model = embed_model
#用初始化llm
Settings.llm = llm
# 加载文档
documents = SimpleDirectoryReader(data_path).load_data()
# 构建索引
index = VectorStoreIndex.from_documents(documents)
# index = VectorStoreIndex.from_documents(documents, embed_model=embed_model, llm=llm)
# 构建查询引擎
query_engine = index.as_query_engine()
return query_engine
except Exception as e:
st.error(f"Error initializing query engine: {e}")
st.stop()
# 初始化查询引擎
if 'query_engine' not in st.session_state:
st.session_state['query_engine'] = init_query_engine()
# 聊天历史管理
if "messages" not in st.session_state:
st.session_state.messages = [
{"role": "assistant", "content": "你好,我是你的助手,有什么我可以帮助你的吗?"}
]
# 清除聊天历史
def clear_chat_history():
st.session_state.messages = [
{"role": "assistant", "content": "你好,我是你的助手,有什么我可以帮助你的吗?"}
]
st.sidebar.button("Clear Chat History", on_click=clear_chat_history)
# 生成助手响应
def generate_response(prompt):
try:
response = st.session_state['query_engine'].query(prompt)
return response.response if response else "无法生成有效响应。"
except Exception as e:
return f"Error: {e}"
# 展示聊天历史
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.write(message["content"])
# 用户输入
if prompt := st.chat_input():
# 添加用户消息到会话历史
st.session_state.messages.append({"role": "user", "content": prompt})
with st.chat_message("user"):
st.write(prompt)
# 生成助手的响应
with st.chat_message("assistant"):
with st.spinner("Thinking..."):
response = generate_response(prompt)
st.write(response)
st.session_state.messages.append({"role": "assistant", "content": response})
requirements.txt内容如下:
sentence-transformers>=2.6.1
llama-index==0.11.20
llama-index-llms-replicate==0.3.0
llama-index-llms-openai-like==0.2.0
llama-index-embeddings-huggingface==0.3.1
llama-index-embeddings-instructor==0.2.1
torch==2.5.0
torchvision==0.20.0
torchaudio==2.5.0
- 运行结果如下: