二次互反律和它的一个证明

285 阅读1分钟

勒让德(Legendre)符号

对于素数pp,如果整数m(pm)m(p\nmid m)满足:存在整数xx,使mx2 (mod p)m\equiv x^2\ (\mathrm{mod}\ p),则称mmpp的二次剩余,否则mmpp的非二次剩余。勒让德符号定义如下:

(ap)={1mp的二次剩余1mp的非二次剩余0m0 (mod p)\left(\frac{a}{p}\right)=\left\{ \begin{aligned} & 1 & m是p的二次剩余\\ & -1 & m是p的非二次剩余\\ & 0 & m\equiv 0\ (\mathrm{mod}\ p) \end{aligned} \right.

命题: pp是素数,mm为整数,则(mp)mp12 (mod p)\left(\frac{m}{p}\right)\equiv m^{\frac{p-1}{2}}\ (\mathrm{mod}\ p).

证明: pmpmp12p\mid m\Leftrightarrow p\mid m^{\frac{p-1}{2}},因此mp120 (mod p)(mp)0 (mod p)m^{\frac{p-1}{2}}\equiv 0\ (\mathrm{mod}\ p)\Leftrightarrow \left(\frac{m}{p}\right)\equiv 0\ (\mathrm{mod}\ p).

pmp\nmid m时,(mp12)2mp11 (mod p)(m^{\frac{p-1}{2}})^2\equiv m^{p-1}\equiv 1\ (\mathrm{mod}\ p),因此mp12±1 (mod p)m^{\frac{p-1}{2}}\equiv \pm1\ (\mathrm{mod}\ p).

假设pmp\nmid m,若存在整数xx,使得mx2 (mod p)m\equiv x^2\ (\mathrm{mod}\ p),则mp12xp11 (mod p)m^{\frac{p-1}{2}}\equiv x^{p-1}\equiv 1\ (\mathrm{mod}\ p). 令ggFpF_p^*的生成元,则存在j>0j>0使gjm (mod p)g^j\equiv m\ (\mathrm{mod}\ p). 若mp121 (mod p)m^{\frac{p-1}{2}}\equiv 1\ (\mathrm{mod}\ p),则g(p1)j21 (mod p)g^\frac{(p-1)j}{2}\equiv 1\ (\mathrm{mod}\ p),因此p1(p1)j2p-1\mid \frac{(p-1)j}{2},从而2j2\mid j. 令x=gj2x=g^{\frac{j}{2}},则有mx2 (mod p)m\equiv x^2\ (\mathrm{mod}\ p),因此mp121 (mod p)(mp)1 (mod p)m^{\frac{p-1}{2}}\equiv 1\ (\mathrm{mod}\ p)\Leftrightarrow \left(\frac{m}{p}\right)\equiv 1\ (\mathrm{mod}\ p).

根据上述讨论,显然也有mp121 (mod p)(mp)1 (mod p)m^{\frac{p-1}{2}}\equiv -1\ (\mathrm{mod}\ p)\Leftrightarrow \left(\frac{m}{p}\right)\equiv -1\ (\mathrm{mod}\ p). 从而命题得证。\blacksquare

推论: pp是素数,则(1p)(1)p12\left(\frac{-1}{p}\right)\equiv (-1)^{\frac{p-1}{2}}.


二次互反律

二次互反律: p,qp,q是不同的奇素数,则(qp)(pq)=(1)(p12)(q12)\left(\frac{q}{p}\right)\left(\frac{p}{q}\right)=(-1)^{(\frac{p-1}{2})(\frac{q-1}{2})}.

证明(Eisenstein): 首先证明qp12(1)uΛ[uqp] (mod p)q^{\frac{p-1}{2}}\equiv (-1)^{\sum_{u\in\Lambda}[\frac{uq}{p}]}\ (\mathrm{mod}\ p). 其中Λ={uu0 (mod 2),2up1}\Lambda=\{u|u\equiv 0\ (\mathrm{mod}\ 2), 2\le u\le p-1\}

u1,u2,,up12u_1,u_2,\dots,u_{\frac{p-1}{2}}Λ\Lambda中全部元素,同时令r(ui)uq (mod p)r(u_i)\equiv uq\ (\mathrm{mod}\ p)0r(ui)p10\le r(u_i)\le p-1. 考虑所有(1)r(ui)r(ui),i=1,2,,p12(-1)^{r(u_i)}r(u_i),i=1,2,\dots,\frac{p-1}{2}

iji\ne j时有(1)r(ui)r(ui)≢(1)r(uj)r(uj) (mod p)(-1)^{r(u_i)}r(u_i)\not\equiv (-1)^{r(u_j)}r(u_j)\ (\mathrm{mod}\ p),否则两边都模qqui±uj (mod p)u_i\equiv \pm u_j\ (\mathrm{mod}\ p),而ui,uju_i,u_j都为偶数,因此uiuj (mod p)u_i\equiv u_j\ (\mathrm{mod}\ p),矛盾。

r(ui)r(u_i)为偶数时(1)r(ui)r(ui)(-1)^{r(u_i)}r(u_i)为偶数,当r(ui)r(u_i)为奇数时,(1)r(ui)r(ui)<0(-1)^{r(u_i)}r(u_i) < 0,因此有

(1)r(u1)r(u1)(1)r(u2)r(u2)(1)r(up12)r(up12)u1u2up12 (mod p)(-1)^{r(u_1)}r(u_1)\cdot (-1)^{r(u_2)}r(u_2)\cdots (-1)^{r(u_{\frac{p-1}{2}})}r(u_{\frac{p-1}{2}})\equiv u_1\cdot u_2\cdots u_{\frac{p-1}{2}}\ (\mathrm{mod}\ p)

简化得到

qp12(1)r(u1)+r(u2)++r(up12) (mod p).q^{\frac{p-1}{2}}\equiv (-1)^{r(u_1)+r(u_2)+\dots+r(u_{\frac{p-1}{2}})}\ (\mathrm{mod}\ p).

根据r(ui)r(u_i)的定义可知,uiq=p[uiqp]+r(ui)u_iq=p[\frac{u_iq}{p}]+r(u_i),由ui0 (mod 2)u_i\equiv 0\ (\mathrm{mod}\ 2)可知,[uiqp]r(ui) (mod 2)[\frac{u_iq}{p}]\equiv r(u_i)\ (\mathrm{mod}\ 2),因此有

qp12(1)uΛ[uqp] (mod p).q^{\frac{p-1}{2}}\equiv (-1)^{\sum_{u\in\Lambda}[\frac{uq}{p}]}\ (\mathrm{mod}\ p).

(qp)qp12 (mod p)\left(\frac{q}{p}\right)\equiv q^{\frac{p-1}{2}}\ (\mathrm{mod}\ p)可知,(qp)(1)uΛ[uqp] (mod p)\left(\frac{q}{p}\right)\equiv (-1)^{\sum_{u\in\Lambda}[\frac{uq}{p}]}\ (\mathrm{mod}\ p),要证明二次互反律,只需证明

(1)uΛ1[uqp]+vΛ2[vpq]=(1)(p12)(q12)(-1)^{\sum_{u\in\Lambda_1}[\frac{uq}{p}]+\sum_{v\in\Lambda_2}[\frac{vp}{q}]}=(-1)^{(\frac{p-1}{2})(\frac{q-1}{2})}

其中Λ1={uu0 (mod 2),2up1},Λ2={vv0 (mod 2),2vq1}\Lambda_1=\{u|u\equiv 0\ (\mathrm{mod}\ 2), 2\le u\le p-1\},\Lambda_2=\{v|v\equiv 0\ (\mathrm{mod}\ 2), 2\le v\le q-1\}.

uiΛ1u_i\in \Lambda_1,点集Sui={(ui,1),(ui,2),,(ui,[uiqp])}S_{u_i}=\{(u_i,1),(u_i,2),\dots,(u_i,[\frac{u_iq}{p}])\}的个数Su=[uqp]|S_u|=[\frac{uq}{p}]. 对vjΛ2v_j\in \Lambda_2,点集Tvj={(1,vj),(2,vj),,([vjpq],vj)}T_{v_j}=\{(1,v_j),(2,v_j),\dots,([\frac{v_jp}{q}],v_j)\}

的个数Tvj=[vjpq]|T_{v_j}|=[\frac{v_jp}{q}]. 令S=uΛ1Su,T=vΛ2TvS=\cup_{u\in\Lambda_1}S_u, T=\cup_{v\in\Lambda_2}T_v,由于uiqp\frac{u_iq}{p}vjpq\frac{v_jp}{q}都不是整数,因此ST=S\cap T=\empty,从而

ST=uΛ1[uqp]+vΛ2[vpq]|S\cup T|=\sum_{u\in\Lambda_1}[\frac{uq}{p}]+\sum_{v\in\Lambda_2}[\frac{vp}{q}]

STS\cup T中的点放在二维平面上,则易知ST=(p12)(q12)|S\cup T|=(\frac{p-1}{2})(\frac{q-1}{2}),因此

(1)uΛ1[uqp]+vΛ2[vpq]=(1)(p12)(q12)(-1)^{\sum_{u\in\Lambda_1}[\frac{uq}{p}]+\sum_{v\in\Lambda_2}[\frac{vp}{q}]}=(-1)^{(\frac{p-1}{2})(\frac{q-1}{2})}

成立,从而二次互反律成立。\blacksquare