从零开始学 LangChain(6) | 豆包MarsCode AI刷题

178 阅读5分钟

提示工程(下)

Chain of Thought(CoT,即“思维链”)

CoT的核心思想是通过生成一系列中间推理步骤来增强模型的推理能力。在Few-Shot CoT和Zero-Shot CoT两种应用方法中,前者通过提供链式思考示例传递给模型,后者则直接告诉模型进行要按部就班的推理。

Few-Shot CoT

Few-Shot CoT 简单的在提示中提供了一些链式思考示例(Chain-of-Thought Prompting),足够大的语言模型的推理能力就能够被增强。简单说,就是给出一两个示例,然后在示例中写清楚推导的过程。

https://p0-xtjj-private.juejin.cn/tos-cn-i-73owjymdk6/8cf6af6d9ac04b758342420ece6af11b~tplv-73owjymdk6-jj-mark-v1:0:0:0:0:5o6Y6YeR5oqA5pyv56S-5Yy6IEAg5bCP5p2o5ZCM5a2mNzY2:q75.awebp?policy=eyJ2bSI6MywidWlkIjoiMjEzNzU0MDc2NzM4MDMwIn0%3D&rk3s=e9ecf3d6&x-orig-authkey=f32326d3454f2ac7e96d3d06cdbb035152127018&x-orig-expires=1731467482&x-orig-sign=tfTQerAnls8qNqm3eQ4ttWoZuL8%3D

整体上,思维链引导AI从理解问题,到搜索信息,再到制定决策,最后生成销售列表。这种方法不仅使AI的推理过程更加清晰,也使得生成的销售列表更加符合用户的需求。具体到每一个步骤,也可以通过思维链来设计更为详细的提示模板,来引导模型每一步的思考都遵循清晰准确的逻辑。

Zero-Shot CoT

在Zero-Shot CoT中,你只要简单地告诉模型“让我们一步步的思考(Let's think step by step) ”,模型就能够给出更好的答案!

https://p0-xtjj-private.juejin.cn/tos-cn-i-73owjymdk6/23846987e60743ea8f4aadbec196e918~tplv-73owjymdk6-jj-mark-v1:0:0:0:0:5o6Y6YeR5oqA5pyv56S-5Yy6IEAg5bCP5p2o5ZCM5a2mNzY2:q75.awebp?policy=eyJ2bSI6MywidWlkIjoiMjEzNzU0MDc2NzM4MDMwIn0%3D&rk3s=e9ecf3d6&x-orig-authkey=f32326d3454f2ac7e96d3d06cdbb035152127018&x-orig-expires=1731467482&x-orig-sign=4ZbK31D4zLWYS%2BQOLsAzADGFRy0%3D

Few-Shot CoT,指的就是在带有示例的提示过程中,加入思考的步骤,从而引导模型给出更好的结果。而Zero-Shot CoT,就是直接告诉模型要一步一步地思考,慢慢地推理。

程序的完整代码如下:

# 设置环境变量和API密钥
import os
os.environ["OPENAI_API_KEY"] = '你的OpenAI API Key'

# 创建聊天模型
from langchain.chat_models import ChatOpenAI
llm = ChatOpenAI(temperature=0)

# 设定 AI 的角色和目标
role_template = "你是一个为花店电商公司工作的AI助手, 你的目标是帮助客户根据他们的喜好做出明智的决定"

# CoT 的关键部分,AI 解释推理过程,并加入一些先前的对话示例(Few-Shot Learning)
cot_template = """
作为一个为花店电商公司工作的AI助手,我的目标是帮助客户根据他们的喜好做出明智的决定。 

我会按部就班的思考,先理解客户的需求,然后考虑各种鲜花的涵义,最后根据这个需求,给出我的推荐。
同时,我也会向客户解释我这样推荐的原因。

示例 1:
  人类:我想找一种象征爱情的花。
  AI:首先,我理解你正在寻找一种可以象征爱情的花。在许多文化中,红玫瑰被视为爱情的象征,这是因为它们的红色通常与热情和浓烈的感情联系在一起。因此,考虑到这一点,我会推荐红玫瑰。红玫瑰不仅能够象征爱情,同时也可以传达出强烈的感情,这是你在寻找的。

示例 2:
  人类:我想要一些独特和奇特的花。
  AI:从你的需求中,我理解你想要的是独一无二和引人注目的花朵。兰花是一种非常独特并且颜色鲜艳的花,它们在世界上的许多地方都被视为奢侈品和美的象征。因此,我建议你考虑兰花。选择兰花可以满足你对独特和奇特的要求,而且,兰花的美丽和它们所代表的力量和奢侈也可能会吸引你。
"""
from langchain.prompts import ChatPromptTemplate, HumanMessagePromptTemplate, SystemMessagePromptTemplate
system_prompt_role = SystemMessagePromptTemplate.from_template(role_template)
system_prompt_cot = SystemMessagePromptTemplate.from_template(cot_template)

# 用户的询问
human_template = "{human_input}"
human_prompt = HumanMessagePromptTemplate.from_template(human_template)

# 将以上所有信息结合为一个聊天提示
chat_prompt = ChatPromptTemplate.from_messages([system_prompt_role, system_prompt_cot, human_prompt])

prompt = chat_prompt.format_prompt(human_input="我想为我的女朋友购买一些花。她喜欢粉色和紫色。你有什么建议吗?").to_messages()

# 接收用户的询问,返回回答结果
response = llm(prompt)
print(response)

首先设置环境变量OpenAI的API密钥,以便能够使用OpenAI的GPT-4模型。然后创建聊天模型:通过调用 ChatOpenAI 类,创建了一个聊天模型。设置 temperature=0 可以让模型生成更确定性的回答,即输出更倾向于最可能的结果。

接着定义了AI的角色和目标,该AI为花店电商公司的助手,其目标是根据客户的喜好来提供购买建议。紧接着,定义 CoT 模板,其中包括了AI的角色和目标描述、思考链条以及遵循思考链条的一些示例,显示了AI如何理解问题,并给出建议。

之后,我使用了PromptTemplate的from_template方法,来生成相应的询问模板。其中包括用于指导模型的SystemMessagePromptTemplate和用于传递人类问题的HumanMessagePromptTemplate。

然后,我使用了ChatPromptTemplate.from_messages方法,整合上述定义的角色,CoT模板和用户询问,生成聊天提示。

最后,将生成的聊天提示输入模型中,获得模型的回答,并打印出来。

Tree of Thoughts(ToT,即“思维树”)

ToT进一步扩展了CoT的思想,通过搜索由连贯的语言序列组成的思维树来解决复杂问题。我通过一个鲜花选择的实例,展示了如何在实际应用中使用ToT框架。

ToT框架的核心思想是:让模型生成和评估其思维的能力,并将其与搜索算法(如广度优先搜索和深度优先搜索)结合起来,进行系统性地探索和验证。

https://p0-xtjj-private.juejin.cn/tos-cn-i-73owjymdk6/80bae6228c8a427881f3ee4d85b5cf62~tplv-73owjymdk6-jj-mark-v1:0:0:0:0:5o6Y6YeR5oqA5pyv56S-5Yy6IEAg5bCP5p2o5ZCM5a2mNzY2:q75.awebp?policy=eyJ2bSI6MywidWlkIjoiMjEzNzU0MDc2NzM4MDMwIn0%3D&rk3s=e9ecf3d6&x-orig-authkey=f32326d3454f2ac7e96d3d06cdbb035152127018&x-orig-expires=1731467455&x-orig-sign=h%2B9Jhm%2B7mctzZrfGs%2FZgNZ%2Buk9k%3D

ToT 框架为每个任务定义具体的思维步骤和每个步骤的候选项数量。例如,要解决一个数学推理任务,先把它分解为3个思维步骤,并为每个步骤提出多个方案,并保留最优的5个候选方案。然后在多条思维路径中搜寻最优的解决方案。

这种方法的优势在于,模型可以通过观察和评估其自身的思维过程,更好地解决问题,而不仅仅是基于输入生成输出。这对于需要深度推理的复杂任务非常有用。此外,通过引入强化学习、集束搜索等技术,可以进一步提高搜索策略的性能,并让模型在解决新问题或面临未知情况时有更好的表现。