提示工程(上)
提示框架
- 指令(Instuction)告诉模型这个任务大概要做什么、怎么做,比如如何使用提供的外部信息、如何处理查询以及如何构造输出。这通常是一个提示模板中比较固定的部分。一个常见用例是告诉模型“你是一个有用的XX助手”,这会让他更认真地对待自己的角色。
- 上下文(Context)则充当模型的额外知识来源。这些信息可以手动插入到提示中,通过矢量数据库检索得来,或通过其他方式(如调用API、计算器等工具)拉入。一个常见的用例时是把从向量数据库查询到的知识作为上下文传递给模型。
- 提示输入(Prompt Input)通常就是具体的问题或者需要大模型做的具体事情,这个部分和“指令”部分其实也可以合二为一。但是拆分出来成为一个独立的组件,就更加结构化,便于复用模板。这通常是作为变量,在调用模型之前传递给提示模板,以形成具体的提示。
- 输出指示器(Output Indicator)标记要生成的文本的开始。这就像我们小时候的数学考卷,先写一个“解”,就代表你要开始答题了。如果生成 Python 代码,可以使用 “import” 向模型表明它必须开始编写 Python 代码(因为大多数 Python 脚本以import开头)。这部分在我们和ChatGPT对话时往往是可有可无的,当然LangChain中的代理在构建提示模板时,经常性的会用一个“Thought:”(思考)作为引导词,指示模型开始输出自己的推理(Reasoning)。
提示模板的类型
LangChain中提供String(StringPromptTemplate)和Chat(BaseChatPromptTemplate)两种基本类型的模板,并基于它们构建了不同类型的提示模板:
1.使用 PromptTemplate
自动替换:
下面通过示例简单说明一下PromptTemplate的使用。
from langchain import PromptTemplate
template = """\
你是业务咨询顾问。
你给一个销售{product}的电商公司,起一个好的名字?
"""
prompt = PromptTemplate.from_template(template)
print(prompt.format(product="鲜花"))
通过PromptTemplate的from_template方法,我们创建了一个提示模板对象,并通过prompt.format方法将模板中的 {product} 替换。
LangChain中的模板的一个方便之处是from_template方法可以从传入的字符串中自动提取变量名称(如product),而无需刻意指定。上面程序中的product自动成为了format方法中的一个参数。
手动指定:
通过提示模板类的构造函数,在创建模板时手工指定input_variables,示例如下:
prompt = PromptTemplate(
input_variables=["product", "market"],
template="你是业务咨询顾问。对于一个面向{market}市场的,专注于销售{product}的公司,你会推荐哪个名字?"
)
print(prompt.format(product="鲜花", market="高端"))
输出:
你是业务咨询顾问。对于一个面向高端市场的,专注于销售鲜花的公司,你会推荐哪个名字?
上面的方式直接生成了提示模板,并没有通过from_template方法从字符串模板中创建提示模板。
2.使用 ChatPromptTemplate
OpenAI的Chat Model中的各种消息角色。
plain
import openai
openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=[
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "Who won the world series in 2020?"},
{"role": "assistant", "content": "The Los Angeles Dodgers won the World Series in 2020."},
{"role": "user", "content": "Where was it played?"}
]
)
OpenAI对传输到gpt-3.5-turbo和GPT-4的messsage格式说明如下:
消息必须是消息对象的数组,其中每个对象都有一个角色(系统、用户或助理)和内容。对话可以短至一条消息,也可以来回多次。 通常,对话首先由系统消息格式化,然后是交替的用户消息和助理消息。 系统消息有助于设置助手的行为。例如,你可以修改助手的个性或提供有关其在整个对话过程中应如何表现的具体说明。但请注意,系统消息是可选的,并且没有系统消息的模型的行为可能类似于使用通用消息,例如“你是一个有用的助手”。 用户消息提供助理响应的请求或评论。 助理消息存储以前的助理响应,但也可以由你编写以给出所需行为的示例。
LangChain的ChatPromptTemplate这一系列的模板,就是跟着这一系列角色而设计的。
3.使用 FewShotPromptTemplate
FewShot起源
在机器学习中,Few-Shot(少样本)、One-Shot(单样本)和与之对应的 Zero-Shot(零样本)的概念都起源于机器学习。
- 对于Few-Shot Learning,一个重要的参考文献是2016年Vinyals, O.的论文《小样本学习的匹配网络》。
- 这篇论文提出了一种新的学习模型——匹配网络(Matching Networks),专门针对单样本学习(One-Shot Learning)问题设计,而 One-Shot Learning 可以看作是一种最常见的 Few-Shot 学习的情况。 * 对于Zero-Shot Learning,一个代表性的参考文献是Palatucci, M.在2009年提出的《基于语义输出编码的零样本学习(Zero-Shot Learning with semantic output codes)》,这篇论文提出了零次学习(Zero-Shot Learning)的概念,其中的学习系统可以根据类的语义描述来识别之前未见过的类。
在提示工程(Prompt Engineering)中,Few-Shot 和 Zero-Shot 学习的概念也被广泛应用。
- 在Few-Shot学习设置中,模型会被给予几个示例,以帮助模型理解任务,并生成正确的响应。
- 在Zero-Shot学习设置中,模型只根据任务的描述生成响应,不需要任何示例。
创建示例样本
samples这个列表,它包含了四个字典,每个字典代表了一种花的类型、适合的场合,以及对应的广告文案。 这些示例样本,就是构建FewShotPrompt时,作为例子传递给模型的参考信息。
1. 创建一些示例
samples = [
{
"flower_type": "玫瑰",
"occasion": "爱情",
"ad_copy": "玫瑰,浪漫的象征,是你向心爱的人表达爱意的最佳选择。"
},
{
"flower_type": "康乃馨",
"occasion": "母亲节",
"ad_copy": "康乃馨代表着母爱的纯洁与伟大,是母亲节赠送给母亲的完美礼物。"
},
{
"flower_type": "百合",
"occasion": "庆祝",
"ad_copy": "百合象征着纯洁与高雅,是你庆祝特殊时刻的理想选择。"
},
{
"flower_type": "向日葵",
"occasion": "鼓励",
"ad_copy": "向日葵象征着坚韧和乐观,是你鼓励亲朋好友的最好方式。"
}
]
创建一个提示模板
配置一个提示模板,将一个示例格式化为字符串。这个格式化程序应该是一个PromptTemplate对象。
PromptTemplate对象是根据指定的输入变量和模板字符串来生成提示的。
# 2. 创建一个提示模板
from langchain.prompts.prompt import PromptTemplate
template="鲜花类型: {flower_type}\n场合: {occasion}\n文案: {ad_copy}"
prompt_sample = PromptTemplate(input_variables=["flower_type", "occasion", "ad_copy"],
template=template)
print(prompt_sample.format(**samples[0]))
创建一个FewShotPromptTemplate对象
通过使用上一步骤中创建的prompt_sample,以及samples列表中的所有示例, 创建一个FewShotPromptTemplate对象,生成更复杂的提示。
# 3. 创建一个FewShotPromptTemplate对象
from langchain.prompts.few_shot import FewShotPromptTemplate
prompt = FewShotPromptTemplate(
examples=samples,
example_prompt=prompt_sample,
suffix="鲜花类型: {flower_type}\n场合: {occasion}",
input_variables=["flower_type", "occasion"]
)
print(prompt.format(flower_type="野玫瑰", occasion="爱情"))
这种模板可以使用多个示例来指导模型生成对应的输出。
调用大模型创建新文案
把这个对象输出给大模型,就可以根据提示,得到我们所需要的文案
# 4. 把提示传递给大模型
import os
os.environ["OPENAI_API_KEY"] = '你的Open AI Key'
from langchain.llms import OpenAI
model = OpenAI(model_name='gpt-3.5-turbo-instruct')
result = model(prompt.format(flower_type="野玫瑰", occasion="爱情"))
print(result)
4.使用示例选择器
如果我们的示例很多,那么一次性把所有示例发送给模型是不现实而且低效的。另外,每次都包含太多的Token也会浪费流量。
通过示例选择器可以选择最合适的样本。
# 初始化示例选择器
example_selector = SemanticSimilarityExampleSelector.from_examples(
samples,
OpenAIEmbeddings(),
Chroma,
k=1
)
# 创建一个使用示例选择器的FewShotPromptTemplate对象
prompt = FewShotPromptTemplate(
example_selector=example_selector,
example_prompt=prompt_sample,
suffix="鲜花类型: {flower_type}\n场合: {occasion}",
input_variables=["flower_type", "occasion"]
)
print(prompt.format(flower_type="红玫瑰", occasion="爱情"))
在这个步骤中,它首先创建了一个SemanticSimilarityExampleSelector对象,这个对象可以根据语义相似性选择最相关的示例。
然后,它创建了一个新的FewShotPromptTemplate对象,这个对象使用了上一步创建的选择器来选择最相关的示例生成提示。
然后,我们又用这个模板生成了一个新的提示,因为我们的提示中需要创建的是红玫瑰的文案,所以,示例选择器example_selector会根据语义的相似度(余弦相似度)找到最相似的示例,也就是“玫瑰”,并用这个示例构建了FewShot模板。