共享模型之无锁

48 阅读10分钟

一、问题提出(如何保证取款方法的线程安全)

有如下需求,保证 account.withdraw 取款方法的线程安全

import java.util.ArrayList;
import java.util.List;

interface Account {
    
    // 获取余额
    Integer getBalance();
    
    // 取款
    void withdraw(Integer amount);
    
    /**
    * 方法内会启动 1000 个线程,每个线程做 -10 元 的操作
    * 如果初始余额为 10000 那么正确的结果应当是 0
    */
    static void demo(Account account) {
        List<Thread> ts = new ArrayList<>();
        
        long start = System.nanoTime();
        for (int i = 0; i < 1000; i++) {
            ts.add(new Thread(() -> {
                account.withdraw(10);
            }));
        }
        ts.forEach(Thread::start);
        
        ts.forEach(t -> {
            try {
                t.join();
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        });
        long end = System.nanoTime();
        
        System.out.println(account.getBalance() 
                           + " cost: " + (end-start)/1000_000 + " ms");
    }
}

原有实现并不是线程安全的

class AccountUnsafe implements Account {
    private Integer balance;
    
    public AccountUnsafe(Integer balance) {
        this.balance = balance;
    }
    
    @Override
    public Integer getBalance() {
        return balance;
    }
    
    @Override
    public void withdraw(Integer amount) {
        balance -= amount;
    }
}

执行测试代码

public static void main(String[] args) {
    Account.demo(new AccountUnsafe(10000));
}

某次的执行结果 330 cost: 306 ms

为什么不安全

withdraw 方法

public void withdraw(Integer amount) {
    balance -= amount; 
}

解决思路-synchronized锁

首先想到的是给 Account 对象加锁

class AccountUnsafe implements Account {
    private Integer balance;
    
    public AccountUnsafe(Integer balance) {
        this.balance = balance;
    }
    
    @Override
    public synchronized Integer getBalance() {
        return balance;
    }
    
    @Override
    public synchronized void withdraw(Integer amount) {
        balance -= amount;
    }
    
}

结果为 0 cost: 399 ms

解决思路-无锁(AtomicInteger)

class AccountSafe implements Account {
    
    private AtomicInteger balance; //原子整数
    
    public AccountSafe(Integer balance) {
        this.balance = new AtomicInteger(balance);
    }
    
    @Override
    public Integer getBalance() {
        return balance.get();
    }
    
    @Override
    public void withdraw(Integer amount) {
        while (true) {
            int prev = balance.get();
            int next = prev - amount;
            if (balance.compareAndSet(prev, next)) {
                break;
            }
        }
        // 可以简化为下面的方法
        // balance.addAndGet(-1 * amount);
    }
}

执行测试代码

public static void main(String[] args) {
    Account.demo(new AccountSafe(10000));
}

某次的执行结果 0 cost: 302 ms

二、 CAS 与 volatile

前面看到的 AtomicInteger 的解决方法,内部并没有用锁来保护共享变量的线程安全。那么它是如何实现的呢?

public void withdraw(Integer amount) {
    while(true) {
        // 需要不断尝试,直到成功为止
        while (true) {
            // 比如拿到了旧值 1000
            int prev = balance.get();
            // 在这个基础上 1000-10 = 990
            int next = prev - amount;
            /*
            compareAndSet 正是做这个检查,在 set 前,先比较 prev 与当前值
            - 不一致了,next 作废,返回 false 表示失败
            比如,别的线程已经做了减法,当前值已经被减成了 990
            那么本线程的这次 990 就作废了,进入 while 下次循环重试
            - 一致,以 next 设置为新值,返回 true 表示成功
            */
            if (balance.compareAndSet(prev, next)) {
                break;
            }
        }
    }
}     

其中的关键是 compareAndSet,它的简称就是 CAS (也有 Compare And Swap 的说法),它必须是原子操作。

volatile

获取共享变量时,为了保证该变量的可见性,需要使用 volatile 修饰。

它可以用来修饰成员变量和静态成员变量,他可以避免线程从自己的工作缓存中查找变量的值,必须到主存中获取它的值,线程操作 volatile 变量都是直接操作主存。即一个线程对 volatile 变量的修改,对另一个线程可见。

注意

volatile 仅仅保证了共享变量的可见性,让其它线程能够看到最新值,但不能解决指令交错问题(不能保证原子性)

CAS 必须借助 volatile 才能读取到共享变量的最新值来实现【比较并交换】的效果

CAS 的特点

结合 CAS 和 volatile 可以实现无锁并发,适用于线程数少、多核 CPU 的场景下。

  • CAS 是基于乐观锁的思想:最乐观的估计,不怕别的线程来修改共享变量,就算改了也没关系,我吃亏点再重试呗。
  • synchronized 是基于悲观锁的思想:最悲观的估计,得防着其它线程来修改共享变量,我上了锁你们都别想改,我改完了解开锁,你们才有机会。
  • CAS 体现的是无锁并发、无阻塞并发,请仔细体会这两句话的意思
    • 因为没有使用 synchronized,所以线程不会陷入阻塞,这是效率提升的因素之一
    • 但如果竞争激烈,可以想到重试必然频繁发生,反而效率会受影响

三、原子整数

J.U.C 并发包提供了:

  • AtomicBoolean
  • AtomicInteger
  • AtomicLong

以 AtomicInteger 为例

AtomicInteger i = new AtomicInteger(0);

// 先获取再自增(i = 0, 结果 i = 1, 返回 0),类似于 i++
System.out.println(i.getAndIncrement());

// 先自增再获取(i = 1, 结果 i = 2, 返回 2),类似于 ++i
System.out.println(i.incrementAndGet());

// 先自减再获取(i = 2, 结果 i = 1, 返回 1),类似于 --i
System.out.println(i.decrementAndGet());

// 先获取再自减(i = 1, 结果 i = 0, 返回 1),类似于 i--
System.out.println(i.getAndDecrement());

// 先获取再加值(i = 0, 结果 i = 5, 返回 0)
System.out.println(i.getAndAdd(5));

// 先加值再获取(i = 5, 结果 i = 0, 返回 0)
System.out.println(i.addAndGet(-5));

// 先获取再更新(i = 0, pi 的当前值, 结果 i = -2, 返回 0)
// 其中函数中的操作能保证原子,但函数需要无副作用
System.out.println(i.getAndUpdate(p -> p - 2));

// 更新并获取(i = -2, pi 的当前值, 结果 i = 0, 返回 0)
// 其中函数中的操作能保证原子,但函数需要无副作用
System.out.println(i.updateAndGet(p -> p + 2));

四、原子引用 AtomicXXXReference

为什么需要原子引用类型? 对引用类型也实现CAS功能

  • AtomicReference
  • AtomicMarkableReference
  • AtomicStampedReference

有如下方法

public interface DecimalAccount {
    // 获取余额
    BigDecimal getBalance();
    
    // 取款
    void withdraw(BigDecimal amount);
    
    /**
    * 方法内会启动 1000 个线程,每个线程做 -10 元 的操作
    * 如果初始余额为 10000 那么正确的结果应当是 0
    */
    static void demo(DecimalAccount account) {
        List<Thread> ts = new ArrayList<>();
        for (int i = 0; i < 1000; i++) {
            ts.add(new Thread(() -> {
                account.withdraw(BigDecimal.TEN);
            }));
        }
        ts.forEach(Thread::start);
        
        ts.forEach(t -> {
            try {
                t.join();
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        });
        System.out.println(account.getBalance());
    }
    
}

试着提供不同的 DecimalAccount 实现,实现安全的取款操作

不安全实现

class DecimalAccountUnsafe implements DecimalAccount {
    BigDecimal balance;
    
    public DecimalAccountUnsafe(BigDecimal balance) {
        this.balance = balance;
    }
    
    @Override
    public BigDecimal getBalance() {
        return balance;
    }
    
    @Override
    public void withdraw(BigDecimal amount) {
        BigDecimal balance = this.getBalance();
        this.balance = balance.subtract(amount);
    }
    
}

安全实现-使用锁

class DecimalAccountSafeLock implements DecimalAccount {
    
    private final Object lock = new Object();
    BigDecimal balance;
    
    public DecimalAccountSafeLock(BigDecimal balance) {
        this.balance = balance;
    }
    
    @Override
    public BigDecimal getBalance() {
        return balance;
    }
    
    @Override
    public void withdraw(BigDecimal amount) {
        synchronized (lock) {
            BigDecimal balance = this.getBalance();
            this.balance = balance.subtract(amount);
        }
    }
    
}

安全实现-使用 CAS AtomicReference

class DecimalAccountSafeCas implements DecimalAccount {
    AtomicReference<BigDecimal> ref;
    
    public DecimalAccountSafeCas(BigDecimal balance) {
        ref = new AtomicReference<>(balance);
    }
    
    @Override
    public BigDecimal getBalance() {
        return ref.get();
    }
    
    @Override
    public void withdraw(BigDecimal amount) {
        while (true) {
            BigDecimal prev = ref.get();
            BigDecimal next = prev.subtract(amount);
            if (ref.compareAndSet(prev, next)) {
                break;
            }
        }
    }
    
}

测试代码

DecimalAccount.demo(new DecimalAccountUnsafe(new BigDecimal("10000")));
DecimalAccount.demo(new DecimalAccountSafeLock(new BigDecimal("10000")));
DecimalAccount.demo(new DecimalAccountSafeCas(new BigDecimal("10000")));

运行结果

4310 cost: 425 ms 
0 cost: 285 ms 
0 cost: 274 ms

ABA 问题及解决

ABA 问题

static AtomicReference<String> ref = new AtomicReference<>("A");

public static void main(String[] args) throws InterruptedException {
    log.debug("main start...");
    // 获取值 A
    // 这个共享变量被它线程修改过?
    String prev = ref.get();
    
    other();
    
    sleep(1);
    // 尝试改为 C
    log.debug("change A->C {}", ref.compareAndSet(prev, "C"));
}

private static void other() {
    
    new Thread(() -> {
        log.debug("change A->B {}", ref.compareAndSet(ref.get(), "B"));
    }, "t1").start();
    
    sleep(0.5);
    
    new Thread(() -> {
        log.debug("change B->A {}", ref.compareAndSet(ref.get(), "A"));
    }, "t2").start();
    
}

输出

11:29:52.325 c.Test36 [main] - main start... 
11:29:52.379 c.Test36 [t1] - change A->B true 
11:29:52.879 c.Test36 [t2] - change B->A true 
11:29:53.880 c.Test36 [main] - change A->C true

主线程仅能判断出共享变量的值与最初值 A 是否相同,不能感知到这种从 A 改为 B 又 改回 A 的情况

如果主线程希望:只要有其它线程【动过了】共享变量,那么自己的 cas 就算失败,这时,仅比较值是不够的,需要再加一个版本号

AtomicStampedReference(维护版本号)

static AtomicStampedReference<String> ref = new AtomicStampedReference<>("A", 0);

public static void main(String[] args) throws InterruptedException {
    log.debug("main start...");
    // 获取值 A
    String prev = ref.getReference();
    // 获取版本号
    int stamp = ref.getStamp();
    log.debug("版本 {}", stamp);
    // 如果中间有其它线程干扰,发生了 ABA 现象
    other();
    sleep(1);
    // 尝试改为 C
    log.debug("change A->C {}", ref.compareAndSet(prev, "C", stamp, stamp + 1));
}

private static void other() {
    new Thread(() -> {
        log.debug("change A->B {}", ref.compareAndSet(ref.getReference(), "B", 
                                                      ref.getStamp(), ref.getStamp() + 1));
        log.debug("更新版本为 {}", ref.getStamp());
    }, "t1").start();
    
    sleep(0.5);
    
    new Thread(() -> {
        log.debug("change B->A {}", ref.compareAndSet(ref.getReference(), "A", 
                                                      ref.getStamp(), ref.getStamp() + 1));
        log.debug("更新版本为 {}", ref.getStamp());
    }, "t2").start();
}

输出为

15:41:34.891 c.Test36 [main] - main start... 
15:41:34.894 c.Test36 [main] - 版本 0 
15:41:34.956 c.Test36 [t1] - change A->B true 
15:41:34.956 c.Test36 [t1] - 更新版本为 1 
15:41:35.457 c.Test36 [t2] - change B->A true 
15:41:35.457 c.Test36 [t2] - 更新版本为 2 
15:41:36.457 c.Test36 [main] - change A->C false

AtomicStampedReference 可以给原子引用加上版本号,追踪原子引用整个的变化过程,如:

A -> B -> A -> C ,通过AtomicStampedReference,我们可以知道,引用变量中途被更改了几次。

但是有时候,并不关心引用变量更改了几次,只是单纯的关心是否更改过,所以就有了 AtomicMarkableReference

AtomicMarkableReference(仅维护是否修改过)

class GarbageBag {
    String desc;
    
    public GarbageBag(String desc) {
        this.desc = desc;
    }
    
    public void setDesc(String desc) {
        this.desc = desc;
    }
    
    @Override
    public String toString() {
        return super.toString() + " " + desc;
    }
    
}
@Slf4j
public class TestABAAtomicMarkableReference {
    public static void main(String[] args) throws InterruptedException {
        GarbageBag bag = new GarbageBag("装满了垃圾");
        // 参数2 mark 可以看作一个标记,表示垃圾袋满了
        AtomicMarkableReference<GarbageBag> ref = new AtomicMarkableReference<>(bag, true);
        
        log.debug("主线程 start...");
        GarbageBag prev = ref.getReference();
        log.debug(prev.toString());
        
        new Thread(() -> {
            log.debug("打扫卫生的线程 start...");
            bag.setDesc("空垃圾袋");
            while (!ref.compareAndSet(bag, bag, true, false)) {}
            log.debug(bag.toString());
        }).start();
        
        Thread.sleep(1000);
        log.debug("主线程想换一只新垃圾袋?");
        boolean success = ref.compareAndSet(prev, new GarbageBag("空垃圾袋"), true, false);
        log.debug("换了么?" + success);
        
        log.debug(ref.getReference().toString());
    }
}

输出

2019-10-13 15:30:09.264 [main] 主线程 start... 
2019-10-13 15:30:09.270 [main] cn.itcast.GarbageBag@5f0fd5a0 装满了垃圾
2019-10-13 15:30:09.293 [Thread-1] 打扫卫生的线程 start... 
2019-10-13 15:30:09.294 [Thread-1] cn.itcast.GarbageBag@5f0fd5a0 空垃圾袋
2019-10-13 15:30:10.294 [main] 主线程想换一只新垃圾袋?
2019-10-13 15:30:10.294 [main] 换了么?false 
2019-10-13 15:30:10.294 [main] cn.itcast.GarbageBag@5f0fd5a0 空垃圾袋

可以注释掉打扫卫生线程代码,再观察输出

五、 原子数组

  • AtomicIntegerArray
  • AtomicLongArray
  • AtomicReferenceArray

有如下方法

/**
    参数1,提供数组、可以是线程不安全数组或线程安全数组
    参数2,获取数组长度的方法
    参数3,自增方法,回传 array, index
    参数4,打印数组的方法
*/
// supplier 提供者 无中生有 ()->结果
// function 函数 一个参数一个结果 (参数)->结果 , BiFunction (参数1,参数2)->结果
// consumer 消费者 一个参数没结果 (参数)->void, BiConsumer (参数1,参数2)->
private static <T> void demo(
    Supplier<T> arraySupplier,
    Function<T, Integer> lengthFun,
    BiConsumer<T, Integer> putConsumer,
    Consumer<T> printConsumer ) {
    
    List<Thread> ts = new ArrayList<>();
    T array = arraySupplier.get();
    int length = lengthFun.apply(array);
    for (int i = 0; i < length; i++) {
        // 每个线程对数组作 10000 次操作
        ts.add(new Thread(() -> {
            for (int j = 0; j < 10000; j++) {
                putConsumer.accept(array, j%length);
            }
        }));
    }
    ts.forEach(t -> t.start()); // 启动所有线程
    
    ts.forEach(t -> {
        try {
            t.join();
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
    }); // 等所有线程结束
    printConsumer.accept(array);
}

不安全的数组

demo(
    ()->new int[10],
    (array)->array.length,
    (array, index) -> array[index]++,
    array-> System.out.println(Arrays.toString(array))
);

结果 [9870, 9862, 9774, 9697, 9683, 9678, 9679, 9668, 9680, 9698]

安全的数组AtomicIntegerArray

demo(
    ()-> new AtomicIntegerArray(10),
    (array) -> array.length(),
    (array, index) -> array.getAndIncrement(index),
    array -> System.out.println(array)
);

结果 [10000, 10000, 10000, 10000, 10000, 10000, 10000, 10000, 10000, 10000]

六、 字段原子更新器 AtomicXXXFieldUpdater

  • AtomicReferenceFieldUpdater // 域字段
  • AtomicIntegerFieldUpdater
  • AtomicLongFieldUpdater

利用字段更新器,可以针对对象的某个域(Field)进行原子操作,只能配合 volatile 修饰的字段使用,

否则会出现异常 Exception in thread "main" java.lang.IllegalArgumentException: Must be volatile type

public class Test5 {
    private volatile int field;
    
    public static void main(String[] args) {
        AtomicIntegerFieldUpdater fieldUpdater =AtomicIntegerFieldUpdater.newUpdater(Test5.class, "field");
        
        Test5 test5 = new Test5();
        fieldUpdater.compareAndSet(test5, 0, 10);
        // 修改成功 field = 10
        System.out.println(test5.field);
        // 修改成功 field = 20
        fieldUpdater.compareAndSet(test5, 10, 20);
        System.out.println(test5.field);
        // 修改失败 field = 20
        fieldUpdater.compareAndSet(test5, 10, 30);
        System.out.println(test5.field);
    }
}

输出

10 
20 
20

七、 原子累加器

累加器性能比较

private static <T> void demo(Supplier<T> adderSupplier, Consumer<T> action) {
    T adder = adderSupplier.get();
    
    long start = System.nanoTime();
    
    List<Thread> ts = new ArrayList<>();
    // 4 个线程,每人累加 50 万
    for (int i = 0; i < 40; i++) {
        ts.add(new Thread(() -> {
            for (int j = 0; j < 500000; j++) {
                action.accept(adder);
            }
        }));
    }
    ts.forEach(t -> t.start());
    
    ts.forEach(t -> {
        try {
            t.join();
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
    });
    long end = System.nanoTime();
    System.out.println(adder + " cost:" + (end - start)/1000_000);
}

比较 AtomicLong 与 LongAdder

for (int i = 0; i < 5; i++) {
    demo(() -> new LongAdder(), adder -> adder.increment());
}
for (int i = 0; i < 5; i++) {
    demo(() -> new AtomicLong(), adder -> adder.getAndIncrement());
}

输出

1000000 cost:43 
1000000 cost:9 
1000000 cost:7 
1000000 cost:7 
1000000 cost:7 
    
1000000 cost:31 
1000000 cost:27 
1000000 cost:28 
1000000 cost:24 
1000000 cost:22

性能提升的原因很简单,就是在有竞争时,设置多个累加单元,Therad-0 累加 Cell[0],而 Thread-1 累加Cell[1]... 最后将结果汇总。

这样它们在累加时操作的不同的 Cell 变量,因此减少了 CAS 重试失败,从而提高性能。