Model I/O
- 提示模板:使用模型的第一个环节是把提示信息输入到模型中,你可以创建LangChain模板,根据实际需求动态选择不同的输入,针对特定的任务和应用调整输入。
- 语言模型:LangChain允许你通过通用接口来调用语言模型。这意味着无论你要使用的是哪种语言模型,都可以通过同一种方式进行调用,这样就提高了灵活性和便利性。
- 输出解析:LangChain还提供了从模型输出中提取信息的功能。通过输出解析器,你可以精确地从模型的输出中获取需要的信息,而不需要处理冗余或不相关的数据,更重要的是还可以把大模型给回的非结构化文本,转换成程序可以处理的结构化数据。
提示模版
提示模版的生成方式如下:
# 导入LangChain中的提示模板
from langchain.prompts import PromptTemplate
# 创建原始模板
template = """您是一位专业的鲜花店文案撰写员。\n
对于售价为 {price} 元的 {flower_name} ,您能提供一个吸引人的简短描述吗?
"""
# 根据原始模板创建LangChain提示模板
prompt = PromptTemplate.from_template(template)
# 打印LangChain提示模板的内容
print(prompt)
提示模版的具体内容如下:
input_variables=['flower_name', 'price']
output_parser=None partial_variables={}
template='/\n您是一位专业的鲜花店文案撰写员。
\n对于售价为 {price} 元的 {flower_name} ,您能提供一个吸引人的简短描述吗?\n'
template_format='f-string'
validate_template=True
语言模型
LangChain中支持的模型有三大类。
- 大语言模型(LLM) ,也叫Text Model,这些模型将文本字符串作为输入,并返回文本字符串作为输出。
- 聊天模型(Chat Model),主要代表Open AI的ChatGPT系列模型。这些模型通常由语言模型支持,但它们的 API 更加结构化。具体来说,这些模型将聊天消息列表作为输入,并返回聊天消息。
- 文本嵌入模型(Embedding Model),这些模型将文本作为输入并返回浮点数列表,也就是Embedding。
调用模型写文案:
# 设置OpenAI API Key
import os
os.environ["OPENAI_API_KEY"] = '你的Open AI API Key'
# 导入LangChain中的OpenAI模型接口
from langchain_openai import OpenAI
# 创建模型实例
model = OpenAI(model_name='gpt-3.5-turbo-instruct')
# 输入提示
input = prompt.format(flower_name=["玫瑰"], price='50')
# 得到模型的输出
output = model.invoke(input)
# 打印输出内容
print(output)
复用提示模版,调用模型写多个鲜花的文案
# 导入LangChain中的提示模板
from langchain import PromptTemplate
# 创建原始模板
template = """您是一位专业的鲜花店文案撰写员。\n
对于售价为 {price} 元的 {flower_name} ,您能提供一个吸引人的简短描述吗?
"""
# 根据原始模板创建LangChain提示模板
prompt = PromptTemplate.from_template(template)
# 打印LangChain提示模板的内容
print(prompt)
# 设置OpenAI API Key
import os
os.environ["OPENAI_API_KEY"] = '你的Open AI API Key'
# 导入LangChain中的OpenAI模型接口
from langchain import OpenAI
# 创建模型实例
model = OpenAI(model_name='gpt-3.5-turbo-instruct')
# 多种花的列表
flowers = ["玫瑰", "百合", "康乃馨"]
prices = ["50", "30", "20"]
# 生成多种花的文案
for flower, price in zip(flowers, prices):
# 使用提示模板生成输入
input_prompt = prompt.format(flower_name=flower, price=price)
# 得到模型的输出
output = model.invoke(input_prompt)
# 打印输出内容
print(output)
从这里可以看出来,只需要替换model的实例化就可以调用不同的LLM来生成文本。
使用LangChain和提示模版的好处:
- 代码的可读性:使用模板的话,提示文本更易于阅读和理解,特别是对于复杂的提示或多变量的情况。
- 可复用性:模板可以在多个地方被复用,让你的代码更简洁,不需要在每个需要生成提示的地方重新构造提示字符串。
- 维护:如果你在后续需要修改提示,使用模板的话,只需要修改模板就可以了,而不需要在代码中查找所有使用到该提示的地方进行修改。
- 变量处理:如果你的提示中涉及到多个变量,模板可以自动处理变量的插入,不需要手动拼接字符串。
- 参数化:模板可以根据不同的参数生成不同的提示,这对于个性化生成文本非常有用。
输出解析
利用输出解析器生成程序能够直接处理的、结构化的数据:
# 导入OpenAI Key
import os
os.environ["OPENAI_API_KEY"] = '你的OpenAI API Key'
# 导入LangChain中的提示模板
from langchain.prompts import PromptTemplate
# 创建原始提示模板
prompt_template = """您是一位专业的鲜花店文案撰写员。
对于售价为 {price} 元的 {flower_name} ,您能提供一个吸引人的简短描述吗?
{format_instructions}"""
# 通过LangChain调用模型
from langchain_openai import OpenAI
# 创建模型实例
model = OpenAI(model_name='gpt-3.5-turbo-instruct')
# 导入结构化输出解析器和ResponseSchema
from langchain.output_parsers import StructuredOutputParser, ResponseSchema
# 定义我们想要接收的响应模式
response_schemas = [
ResponseSchema(name="description", description="鲜花的描述文案"),
ResponseSchema(name="reason", description="为什么要这样写这个文案")
]
# 创建输出解析器
output_parser = StructuredOutputParser.from_response_schemas(response_schemas)
# 获取格式指示
format_instructions = output_parser.get_format_instructions()
# 根据原始模板创建提示,同时在提示中加入输出解析器的说明
prompt = PromptTemplate.from_template(prompt_template,
partial_variables={"format_instructions": format_instructions})
# 数据准备
flowers = ["玫瑰", "百合", "康乃馨"]
prices = ["50", "30", "20"]
# 创建一个空的DataFrame用于存储结果
import pandas as pd
df = pd.DataFrame(columns=["flower", "price", "description", "reason"]) # 先声明列名
for flower, price in zip(flowers, prices):
# 根据提示准备模型的输入
input = prompt.format(flower_name=flower, price=price)
# 获取模型的输出
output = model.invoke(input)
# 解析模型的输出(这是一个字典结构)
parsed_output = output_parser.parse(output)
# 在解析后的输出中添加“flower”和“price”
parsed_output['flower'] = flower
parsed_output['price'] = price
# 将解析后的输出添加到DataFrame中
df.loc[len(df)] = parsed_output
# 打印字典
print(df.to_dict(orient='records'))
# 保存DataFrame到CSV文件
df.to_csv("flowers_with_descriptions.csv", index=False)
总结
使用LangChain框架的好处:
- 模板管理:在大型项目中,可能会有许多不同的提示模板,使用 LangChain 可以帮助你更好地管理这些模板,保持代码的清晰和整洁。
- 变量提取和检查:LangChain 可以自动提取模板中的变量并进行检查,确保你没有忘记填充任何变量。
- 模型切换:如果你想尝试使用不同的模型,只需要更改模型的名称就可以了,无需修改代码。
- 输出解析:LangChain的提示模板可以嵌入对输出格式的定义,以便在后续处理过程中比较方便地处理已经被格式化了的输出。
思考题
-
请你用自己的理解,简述LangChain调用大语言模型来做应用开发的优势。
- 模版化管理:可以统一管理提示模版,一是为了方便管理,二是避免了不同大模型所使用模版可能存在差异化的问题。
- 模型切换方便:只需要替换model的实例化,然后再定制化其他的模型即可。
- 格式化输出:通过输出解析器指定输出格式。
-
在上面的示例中,format_instructions,也就是输出格式是怎样用output_parser构建出来的,又是怎样传递到提示模板中的?
-
format_instructions是怎么构建的?
format_instructions是通过otput_parser.get_format_instructions()生成的。output_parser根据预先定义的响应模式 (response schemas) 确定数据格式,这个格式化说明就会作为format_instructions,并传递到提示模板 (PromptTemplate) 中。 -
format_instructions是怎样传递到提示模版中的?
在
PromptTemplate.from_template创建模板时,通过partial_variables参数将format_instructions传入模板,这样在生成提示内容时,模板会自动填充format_instructions的内容。
-
-
加入了partial_variables,也就是输出解析器指定的format_instructions之后的提示,为什么能够让模型生成结构化的输出?你可以打印出这个提示,一探究竟。
可以看到format_instructions提示LLM应该生成指定格式,所以才会让模型生成结构化的输出。
-
使用输出解析器后,调用模型时有没有可能仍然得不到所希望的输出?也就是说,模型有没有可能仍然返回格式不够完美的输出?
我认为是有可能的,有的时候给出的指令太多太复杂就会导致模型对各个部分的区分度不高,导致输出解析后,每个部分的回答并不是完全符合该部分的问题的,当然模型对指令理解也有一定的偏差,会导致生成的内容不完全符合期望格式。