给你一个由 '1'(陆地)和 '0'(水)组成的的二维网格,请你计算网格中岛屿的数量。
岛屿总是被水包围,并且每座岛屿只能由水平方向和/或竖直方向上相邻的陆地连接形成。
此外,你可以假设该网格的四条边均被水包围。
示例 1:
输入: grid = [ ["1","1","1","1","0"],
["1","1","0","1","0"],
["1","1","0","0","0"],
["0","0","0","0","0"]
]
输出: 1
示例 2:
输入: grid = [ ["1","1","0","0","0"],
["1","1","0","0","0"],
["0","0","1","0","0"],
["0","0","0","1","1"]
]
输出: 3
思路
1.直观的想法是DFS递归染色,比较容易想到
2.连通性问题也可以想到并查集,二维如何运用呢?
UF
用i*w+j来摊平二维数组为1维,然后遇到岛屿节点就向右向下把相邻的岛屿都union一次,最终得到的联通两count-水节点数量=岛屿联通数量
class Solution {
private int rows;
private int cols;
public int numIslands(char[][] grid) {
rows = grid.length;
if (rows == 0) {
return 0;
}
cols = grid[0].length;
// 空地的数量
int spaces = 0;
UnionFind unionFind = new UnionFind(rows * cols);
int[][] directions = {{1, 0}, {0, 1}};
for (int i = 0; i < rows; i++) {
for (int j = 0; j < cols; j++) {
if (grid[i][j] == '0') {
spaces++;
} else {
// 此时 grid[i][j] == '1'
for (int[] direction : directions) {
int newX = i + direction[0];
int newY = j + direction[1];
// 先判断坐标合法,再检查右边一格和下边一格是否是陆地
if (newX < rows && newY < cols && grid[newX][newY] == '1') {
unionFind.union(getIndex(i, j), getIndex(newX, newY));
}
}
}
}
}
return unionFind.getCount() - spaces;
}
private int getIndex(int i, int j) {
return i * cols + j;
}
private class UnionFind {
/**
* 连通分量的个数
*/
private int count;
private int[] parent;
public int getCount() {
return count;
}
public UnionFind(int n) {
this.count = n;
parent = new int[n];
for (int i = 0; i < n; i++) {
parent[i] = i;
}
}
private int find(int x) {
while (x != parent[x]) {
parent[x] = parent[parent[x]];
x = parent[x];
}
return x;
}
public void union(int x, int y) {
int xRoot = find(x);
int yRoot = find(y);
if (xRoot == yRoot) {
return;
}
parent[xRoot] = yRoot;
count--;
}
}
}
DFS
public int numIslands(char[][] grid) {
int h = grid.length;
int w = grid[0].length;
int count = 0;
//首先先到的是递归
boolean[][] visited = new boolean[h][w];
for (int i = 0; i < h; i++) {
for (int j = 0; j < w; j++) {
if (grid[i][j] == '1' && visited[i][j] == false){
visit(grid, i, j ,visited);
count++;
}
}
}
return count;
}
public void visit(char[][] grid, int x, int y, boolean[][] visited) {
int h = grid.length;
int w = grid[0].length;
//递归结束条件
if (x >= h || y >= w || x < 0 || y < 0 || visited[x][y] == true || grid[x][y] == '0')
return;
visited[x][y] = true;
visit(grid, x + 1, y, visited);
visit(grid, x - 1, y, visited);
visit(grid, x, y + 1, visited);
visit(grid, x, y - 1, visited);
return;
}