青训营-最大异或和计算

4 阅读2分钟

问题描述

给定两个长度为 n 的数组 a 和 b,定义 f(c) 为数组 c 的所有元素的总和。现在,你需要恰好删除数组 a 或者数组 b 中的一个元素,使得 f(a) 和 f(b) 的异或结果最大。请输出这个最大的异或和。


测试样例

样例1:

输入:n = 3,a = [1, 2, 3],b = [3, 2, 1]
输出:5

样例2:

输入:n = 4,a = [4, 5, 6, 7],b = [7, 8, 9, 10]
输出:51

样例3:

输入:n = 5,a = [10, 20, 30, 40, 50],b = [50, 40, 30, 20, 10]
输出:248

问题分析

  1. 定义

    • f(a) 表示数组 a 所有元素的和。
    • f(b) 表示数组 b 所有元素的和。
  2. 要求

    • 恰好删除数组 ab 中的一个元素,使得 f(a)f(b) 的异或和最大。

解题思路

  1. 计算数组 ab 的初始总和,分别记为 sum_asum_b
  2. 我们可以删除数组 a 中的任意一个元素 a[i],此时数组 a 的新和为 sum_a - a[i],数组 b 的和不变,异或值为 (sum_a - a[i]) ^ sum_b
  3. 同样地,我们也可以删除数组 b 中的任意一个元素 b[j],此时数组 b 的新和为 sum_b - b[j],数组 a 的和不变,异或值为 sum_a ^ (sum_b - b[j])
  4. 遍历数组 ab,找到使得上述异或结果最大的值。

def solution(n: int, a: list, b: list) -> int:
    # 计算初始的总和
    sum_a = sum(a)
    sum_b = sum(b)
    
    # 初始化最大异或和
    max_xor = 0
    
    # 遍历数组 a 中的每个元素,尝试删除该元素
    for a_i in a:
        xor_result = (sum_a - a_i) ^ sum_b
        max_xor = max(max_xor, xor_result)
    
    # 遍历数组 b 中的每个元素,尝试删除该元素
    for b_j in b:
        xor_result = sum_a ^ (sum_b - b_j)
        max_xor = max(max_xor, xor_result)
    
    return max_xor

# 测试用例
if __name__ == '__main__':
    print(solution(3, [1, 2, 3], [3, 2, 1]) == 5)     # True
    print(solution(4, [4, 5, 6, 7], [7, 8, 9, 10]) == 51)  # True
    print(solution(5, [10, 20, 30, 40, 50], [50, 40, 30, 20, 10]) == 248)  # True

代码解释

  1. 计算总和:计算数组 ab 的总和 sum_asum_b

  2. 最大异或计算

    • 遍历数组 a 中的每个元素,模拟删除后计算异或值 (sum_a - a[i]) ^ sum_b
    • 遍历数组 b 中的每个元素,模拟删除后计算异或值 sum_a ^ (sum_b - b[j])
  3. 返回结果:返回最大异或值 max_xor