深度学习笔记 - Pytorch实现mnist手写数字识别

251 阅读4分钟

Always Day1!许久没有写torch的代码了,今天从深度学习领域的hello world项目开始做起。

一. 环境

整体使用ipynotebook编码,便于使用中间结果测试

pip install ipykernel

之后重启kernel后,选择安装过ipykernel包的虚拟环境,避免报错

检查电脑中的GPU是否可用

import torch
import torch.nn as nn

import matplotlib.pyplot as plt
import torchvision

print(torch.cuda.is_available())
# True

定义要运行的gpu device

device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
print(device)
# cuda:0

二. 构建dataset和dataloader

  • torch.utils.data.DataLoader()用于封装torch.utils.data.Dataset(), 便于之后按batch遍历整个数据集
  • 其他任务要自己定义dataset和dataloader
  • 常用的有TensorDataset(曾在构建多元时序数据集上用到)
train_ds = torchvision.datasets.MNIST('data', 
                                      train=True, 
                                      transform=torchvision.transforms.ToTensor(), # 将数据类型转化为Tensor
                                      download=True)

test_ds  = torchvision.datasets.MNIST('data', 
                                      train=False, 
                                      transform=torchvision.transforms.ToTensor(), # 将数据类型转化为Tensor
                                      download=True)
batch_size = 32

train_dl = torch.utils.data.DataLoader(train_ds, 
                                       batch_size=batch_size, 
                                       shuffle=True)

test_dl  = torch.utils.data.DataLoader(test_ds, 
                                       batch_size=batch_size)

取一个batch检查tensor的shape

iter(dataloader)用于构建可迭代对象,next()用于取第一个元素。Mnist数据集在封装dataloader的过程中,把图像数据和对应标签封装到了一个列表里,图像维度是[batch_size, channel_size, width, height]。

print(next(iter(train_dl))[0].shape)
print(next(iter(train_dl))[1].shape)
# torch.Size([32, 1, 28, 28])
# torch.Size([32])

三. 构建网络

构建两层卷积神经网络和输出层

import torch.nn.functional as F

num_classes = 10  # 图片的类别数

class Model(nn.Module):
     def __init__(self):
        super().__init__()
         # 特征提取网络
        self.conv1 = nn.Conv2d(1, 32, kernel_size=3)  # 第一层卷积,卷积核大小为3*3
        self.pool1 = nn.MaxPool2d(2)                  # 设置池化层,池化核大小为2*2
        self.conv2 = nn.Conv2d(32, 64, kernel_size=3) # 第二层卷积,卷积核大小为3*3   
        self.pool2 = nn.MaxPool2d(2) 
                                      
        # 分类网络
        self.fc1 = nn.Linear(1600, 64)          
        self.fc2 = nn.Linear(64, num_classes)
     # 前向传播
     def forward(self, x):
        x = self.pool1(F.relu(self.conv1(x)))     
        x = self.pool2(F.relu(self.conv2(x)))

        x = torch.flatten(x, start_dim=1)

        x = F.relu(self.fc1(x))
        x = self.fc2(x)
       
        return x

P.S. 使用断言验证模型输出结果是否符合预期

test_tensor = torch.randn(32, 1, 28, 28)
model = Model()
assert model(test_tensor).shape == (32, 10), "模型结构有问题"

使用torchinfo打印模型结构信息,包含参数量

from torchinfo import summary
# 将模型转移到GPU中(我们模型运行均在GPU中进行)
model = Model().to(device)

summary(model)

四. 深度学习训练代码

设置超参数、优化器和损失函数

loss_fn    = nn.CrossEntropyLoss() # 创建损失函数
learn_rate = 1e-2 # 学习率
opt        = torch.optim.SGD(model.parameters(),lr=learn_rate)

训练函数代码,计算准确率和loss

  • 计算出来的loss包含梯度,需要使用.item()转化成数值型,需要把batch数和训练集数据总数计算出来。
  • 在使用 CrossEntropyLoss 时不需要显式调用 Softmax
# 训练循环
def train(dataloader, model, loss_fn, optimizer):
    size = len(dataloader.dataset)  # 训练集的大小,一共60000张图片
    num_batches = len(dataloader)   # 批次数目,1875(60000/32)

    train_loss, train_acc = 0, 0  # 初始化训练损失和正确率
    
    for X, y in dataloader:  # 获取图片及其标签
        X, y = X.to(device), y.to(device)
        
        # 计算预测误差
        pred = model(X)          # 网络输出
        loss = loss_fn(pred, y)  # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失
        
        # 反向传播
        optimizer.zero_grad()  # grad属性归零
        loss.backward()        # 反向传播
        optimizer.step()       # 每一步自动更新
        
        # 记录acc与loss
        train_acc  += (pred.argmax(1) == y).type(torch.float).sum().item()
        train_loss += loss.item()
            
    train_acc  /= size
    train_loss /= num_batches

    return train_acc, train_loss

测试函数代码

注意当不进行参数更新时,使用with torch.no_grad()和model.eval()停止反向传播

def test (dataloader, model, loss_fn):
    size        = len(dataloader.dataset)  # 测试集的大小,一共10000张图片
    num_batches = len(dataloader)          # 批次数目,313(10000/32=312.5,向上取整)
    test_loss, test_acc = 0, 0
    
    # 当不进行训练时,停止梯度更新,节省计算内存消耗
    with torch.no_grad():
        for imgs, target in dataloader:
            imgs, target = imgs.to(device), target.to(device)
            
            # 计算loss
            target_pred = model(imgs)
            loss        = loss_fn(target_pred, target)
            
            test_loss += loss.item()
            test_acc  += (target_pred.argmax(1) == target).type(torch.float).sum().item()

    test_acc  /= size
    test_loss /= num_batches

    return test_acc, test_loss

主函数代码

epochs     = 5
train_loss = []
train_acc  = []
test_loss  = []
test_acc   = []

for epoch in range(epochs):
    model.train()
    epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, opt)
    
    model.eval()
    epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)
    
    train_acc.append(epoch_train_acc)
    train_loss.append(epoch_train_loss)
    test_acc.append(epoch_test_acc)
    test_loss.append(epoch_test_loss)
    
    template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%,Test_loss:{:.3f}')
    print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss))
print('Done')

主函数运行截图

image.png

五. 训练结果可视化

使用plt绘制折线图,后续可用wandb或tensorboard可视化训练结果

import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore")               #忽略警告信息
plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
plt.rcParams['figure.dpi']         = 100        #分辨率

epochs_range = range(epochs)

plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)

plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')

plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

image.png