# 使用Comet优化你的LangChain实验:全面指南
在机器学习的研发过程中,管理、可视化和优化模型是至关重要的。Comet平台不仅能够与现有的基础设施和工具无缝集成,还能有效地跟踪实验、评估指标和LLM会话。在这篇指南中,我们将展示如何利用Comet跟踪LangChain实验。
## 主要内容
### Comet简介
Comet是一个强大的机器学习平台,支持从训练到生产监控的全流程管理。它的集成能力强大,可以与各种深度学习框架和工具合作,为开发者提供更加直观的模型管理体验。
### 安装Comet和依赖项
首先,让我们安装必要的依赖库。
```bash
%pip install --upgrade --quiet comet_ml langchain langchain-openai google-search-results spacy textstat pandas
!{sys.executable} -m spacy download en_core_web_sm
初始化Comet和设置凭证
初始化Comet并设置项目名称:
import comet_ml
comet_ml.init(project_name="comet-example-langchain")
设置OpenAI和SerpAPI的API凭证,确保你可以访问这些服务:
import os
os.environ["OPENAI_API_KEY"] = "your-openai-api-key-here"
os.environ["SERPAPI_API_KEY"] = "your-serpapi-api-key-here"
场景1:使用LLM
使用CometCallbackHandler跟踪你的LLM实验:
from langchain_community.callbacks import CometCallbackHandler
from langchain_core.callbacks import StdOutCallbackHandler
from langchain_openai import OpenAI
comet_callback = CometCallbackHandler(
project_name="comet-example-langchain",
complexity_metrics=True,
stream_logs=True,
tags=["llm"],
visualizations=["dep"],
)
callbacks = [StdOutCallbackHandler(), comet_callback]
llm = OpenAI(temperature=0.9, callbacks=callbacks, verbose=True)
llm_result = llm.generate(["Tell me a joke", "Tell me a poem", "Tell me a fact"] * 3)
print("LLM result", llm_result)
comet_callback.flush_tracker(llm, finish=True)
场景2:在链中使用LLM
创建一个LLMChain以合成更复杂的任务:
from langchain.chains import LLMChain
from langchain_core.prompts import PromptTemplate
template = """You are a playwright. Given the title of play, it is your job to write a synopsis for that title.
Title: {title}
Playwright: This is a synopsis for the above play:"""
prompt_template = PromptTemplate(input_variables=["title"], template=template)
synopsis_chain = LLMChain(llm=llm, prompt=prompt_template, callbacks=callbacks)
test_prompts = [{"title": "Documentary about Bigfoot in Paris"}]
print(synopsis_chain.apply(test_prompts))
comet_callback.flush_tracker(synopsis_chain, finish=True)
场景3:使用Agent和工具
结合Agent和工具执行复杂查询:
from langchain.agents import initialize_agent, load_tools
tools = load_tools(["serpapi", "llm-math"], llm=llm, callbacks=callbacks)
agent = initialize_agent(
tools,
llm,
agent="zero-shot-react-description",
callbacks=callbacks,
verbose=True,
)
agent.run(
"Who is Leo DiCaprio's girlfriend? What is her current age raised to the 0.43 power?"
)
comet_callback.flush_tracker(agent, finish=True)
场景4:使用自定义评估指标
定义并使用自定义的ROUGE评估指标:
from rouge_score import rouge_scorer
class Rouge:
def __init__(self, reference):
self.reference = reference
self.scorer = rouge_scorer.RougeScorer(["rougeLsum"], use_stemmer=True)
def compute_metric(self, generation, prompt_idx, gen_idx):
prediction = generation.text
results = self.scorer.score(target=self.reference, prediction=prediction)
return {"rougeLsum_score": results["rougeLsum"].fmeasure, "reference": self.reference}
reference = """
The tower is 324 metres (1,063 ft) tall, about the same height as an 81-storey building.
It was the first structure to reach a height of 300 metres...
"""
rouge_score = Rouge(reference=reference)
prompt_template = PromptTemplate(input_variables=["article"], template=template)
comet_callback = CometCallbackHandler(
project_name="comet-example-langchain",
complexity_metrics=False,
stream_logs=True,
tags=["custom_metrics"],
custom_metrics=rouge_score.compute_metric,
)
callbacks = [StdOutCallbackHandler(), comet_callback]
synopsis_chain = LLMChain(llm=llm, prompt=prompt_template)
test_prompts = [{"article": """The tower is 324 metres (1,063 ft)...""" }]
print(synopsis_chain.apply(test_prompts, callbacks=callbacks))
comet_callback.flush_tracker(synopsis_chain, finish=True)
常见问题和解决方案
-
API访问问题:在某些地区,由于网络限制,可能需要考虑使用API代理服务来确保Comet和API的稳定访问。
-
凭证管理:确保API密钥和凭证安全存储,避免泄露。
总结和进一步学习资源
利用Comet,你可以轻松跟踪和优化LangChain实验。这篇文章介绍了从初始化到使用高级特性的完整流程。
参考资料
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
---END---