使用Comet优化你的LangChain实验:全面指南

95 阅读3分钟
# 使用Comet优化你的LangChain实验:全面指南

在机器学习的研发过程中,管理、可视化和优化模型是至关重要的。Comet平台不仅能够与现有的基础设施和工具无缝集成,还能有效地跟踪实验、评估指标和LLM会话。在这篇指南中,我们将展示如何利用Comet跟踪LangChain实验。

## 主要内容

### Comet简介

Comet是一个强大的机器学习平台,支持从训练到生产监控的全流程管理。它的集成能力强大,可以与各种深度学习框架和工具合作,为开发者提供更加直观的模型管理体验。

### 安装Comet和依赖项

首先,让我们安装必要的依赖库。

```bash
%pip install --upgrade --quiet comet_ml langchain langchain-openai google-search-results spacy textstat pandas
!{sys.executable} -m spacy download en_core_web_sm

初始化Comet和设置凭证

初始化Comet并设置项目名称:

import comet_ml
comet_ml.init(project_name="comet-example-langchain")

设置OpenAI和SerpAPI的API凭证,确保你可以访问这些服务:

import os

os.environ["OPENAI_API_KEY"] = "your-openai-api-key-here"
os.environ["SERPAPI_API_KEY"] = "your-serpapi-api-key-here"

场景1:使用LLM

使用CometCallbackHandler跟踪你的LLM实验:

from langchain_community.callbacks import CometCallbackHandler
from langchain_core.callbacks import StdOutCallbackHandler
from langchain_openai import OpenAI

comet_callback = CometCallbackHandler(
    project_name="comet-example-langchain",
    complexity_metrics=True,
    stream_logs=True,
    tags=["llm"],
    visualizations=["dep"],
)
callbacks = [StdOutCallbackHandler(), comet_callback]
llm = OpenAI(temperature=0.9, callbacks=callbacks, verbose=True)

llm_result = llm.generate(["Tell me a joke", "Tell me a poem", "Tell me a fact"] * 3)
print("LLM result", llm_result)
comet_callback.flush_tracker(llm, finish=True)

场景2:在链中使用LLM

创建一个LLMChain以合成更复杂的任务:

from langchain.chains import LLMChain
from langchain_core.prompts import PromptTemplate

template = """You are a playwright. Given the title of play, it is your job to write a synopsis for that title.
Title: {title}
Playwright: This is a synopsis for the above play:"""
prompt_template = PromptTemplate(input_variables=["title"], template=template)
synopsis_chain = LLMChain(llm=llm, prompt=prompt_template, callbacks=callbacks)

test_prompts = [{"title": "Documentary about Bigfoot in Paris"}]
print(synopsis_chain.apply(test_prompts))
comet_callback.flush_tracker(synopsis_chain, finish=True)

场景3:使用Agent和工具

结合Agent和工具执行复杂查询:

from langchain.agents import initialize_agent, load_tools

tools = load_tools(["serpapi", "llm-math"], llm=llm, callbacks=callbacks)
agent = initialize_agent(
    tools,
    llm,
    agent="zero-shot-react-description",
    callbacks=callbacks,
    verbose=True,
)
agent.run(
    "Who is Leo DiCaprio's girlfriend? What is her current age raised to the 0.43 power?"
)
comet_callback.flush_tracker(agent, finish=True)

场景4:使用自定义评估指标

定义并使用自定义的ROUGE评估指标:

from rouge_score import rouge_scorer

class Rouge:
    def __init__(self, reference):
        self.reference = reference
        self.scorer = rouge_scorer.RougeScorer(["rougeLsum"], use_stemmer=True)

    def compute_metric(self, generation, prompt_idx, gen_idx):
        prediction = generation.text
        results = self.scorer.score(target=self.reference, prediction=prediction)
        return {"rougeLsum_score": results["rougeLsum"].fmeasure, "reference": self.reference}

reference = """
The tower is 324 metres (1,063 ft) tall, about the same height as an 81-storey building.
It was the first structure to reach a height of 300 metres...
"""
rouge_score = Rouge(reference=reference)

prompt_template = PromptTemplate(input_variables=["article"], template=template)
comet_callback = CometCallbackHandler(
    project_name="comet-example-langchain",
    complexity_metrics=False,
    stream_logs=True,
    tags=["custom_metrics"],
    custom_metrics=rouge_score.compute_metric,
)
callbacks = [StdOutCallbackHandler(), comet_callback]
synopsis_chain = LLMChain(llm=llm, prompt=prompt_template)

test_prompts = [{"article": """The tower is 324 metres (1,063 ft)...""" }]
print(synopsis_chain.apply(test_prompts, callbacks=callbacks))
comet_callback.flush_tracker(synopsis_chain, finish=True)

常见问题和解决方案

  1. API访问问题:在某些地区,由于网络限制,可能需要考虑使用API代理服务来确保Comet和API的稳定访问。

  2. 凭证管理:确保API密钥和凭证安全存储,避免泄露。

总结和进一步学习资源

利用Comet,你可以轻松跟踪和优化LangChain实验。这篇文章介绍了从初始化到使用高级特性的完整流程。

参考资料

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!


---END---