数据结构与算法-赫夫曼树_数据结构与算法哈夫曼树计算题,字节跳动大数据开发面试全套真题解析在互联网火了

35 阅读3分钟

给定N个权值作为N个叶子结点,构造一棵二叉树,若该树的带权路径长度达到最小,称这样的二叉树为最优二叉树,也称为哈夫曼树(Huffman Tree)。哈夫曼树是带权路径长度最短的树,权值较大的结点离根较近。

赫夫曼编码

在这里插入图片描述

在上图的最优二叉树中我们给每一条边加上一个权值,指向左子节点的边我们标记为0,指向右子节点的边标记为1,那从根节点

到叶节点的路径就是我们说的哈夫曼编码;
所以图c的赫夫曼树对应的编码就是:
电报加密
A:0
B:10
C:110
D:111

构建赫夫曼树

核心思想:贪心算法:利用局部最优推出全局最优,把频率出现多的用短码表示,频率出现小的就用长一点。而且,任何一个字符的编码都不是另一个的前缀,在解压缩的时候,我们每次会读取尽可能长的可解压的二进制串,所以在解压缩的时候也不会产生歧义。

  • 具体实现思路:
    1.每次取数值最小的两个节点,将之组成为一颗子树。
    2.移除原来的两个点
    3.然后将组成的子树放入原来的序列中
    4.重复执行1 2 3 直到只剩最后一个点

代码实现

package com.DataConstruct.tree.HafuTree;

public class HfmNode implements Comparable<HfmNode>{		//优先队列,小的我把你优先级调高
	
	String chars;		//节点里面的字符
	int fre;		//表示是频率
	HfmNode left;
	HfmNode right;
	HfmNode parent;	//用来找上层的
	
	@Override
	public int compareTo(HfmNode o) {
		return this.fre - o.fre;
	}
	
}


package com.DataConstruct.tree.HafuTree;

import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.PriorityQueue;

public class HuffmenTree {

	HfmNode root;
	List<HfmNode> leafs; // 叶子节点
	Map<Character, Integer> weights; // 叶子节点的权重, a,b,c,d,e

	public HuffmenTree(Map<Character, Integer> weights) {
		this.weights = weights;
		leafs = new ArrayList<HfmNode>();
	}
	public Map<Character, String> code() {

		Map<Character, String> map = new HashMap<Character, String>();
		for (HfmNode node : leafs) {
			String code = "";
			Character c = new Character(node.chars.charAt(0)); // 叶子节点肯定只有一个字符
			HfmNode current = node; // 只有一个点
			do {
				if (current.parent != null && current == current.parent.left) { // 说明当前点是左边
					code = "0" + code;
				} else {
					code = "1" + code;
				}
				current = current.parent;
			} while (current.parent != null); // parent == null就表示到了根节点
			map.put(c, code);
			System.out.println(c + ":" + code);
		}
		return map;

	}

	public void creatTree() {
		Character keys[] = weights.keySet().toArray(new Character[0]); // 拿出所有的点
		PriorityQueue<HfmNode> priorityQueue = new PriorityQueue<HfmNode>(); // jdk底层的优先队列
		for (Character c : keys) {
			HfmNode hfmNode = new HfmNode();
			hfmNode.chars = c.toString();
			hfmNode.fre = weights.get(c); // 权重
			priorityQueue.add(hfmNode); // 首先把我们的优先队列初始化进去
			leafs.add(hfmNode);
		}

		int len = priorityQueue.size();
		for (int i = 1; i <= len - 1; i++) { // 每次找最小的两个点合并
			HfmNode n1 = priorityQueue.poll(); //
			HfmNode n2 = priorityQueue.poll(); // 每次取优先队列的前面两个 就一定是两个最小的

			HfmNode newNode = new HfmNode();
			newNode.chars = n1.chars + n2.chars; // 我们把值赋值一下,也可以不复制
			newNode.fre = n1.fre + n2.fre; // 把权重相加

			// 维护出树的结构
			newNode.left = n1;
			newNode.right = n2;
			n1.parent = newNode;
			n2.parent = newNode;

			priorityQueue.add(newNode);
		}
		root = priorityQueue.poll(); // 最后这个点就是我们的根节点
		System.out.println("构建完成");
	}

	public static void main(String[] args) {
		// a:3 b:24 c:6 d:20 e:34 f:4 g:12
		Map<Character, Integer> weights = new HashMap<Character, Integer>();
		//一般来说:动态的加密,最开始是不知道里面有什么内容的。我们需要一个密码本,往往就是某个字典。如果是英文就用英文字典,统计次数。
		//换密码本
		//静态的文件。针对性的做编码.图像加密,没有特性的。hash加密(MD5)
		weights.put('a', 3);


![img](https://p6-xtjj-sign.byteimg.com/tos-cn-i-73owjymdk6/d55bdc2dcadf4f05b428a8bd6c243000~tplv-73owjymdk6-jj-mark-v1:0:0:0:0:5o6Y6YeR5oqA5pyv56S-5Yy6IEAg5py65Zmo5a2m5Lmg5LmL5b-DQUk=:q75.awebp?rk3s=f64ab15b&x-expires=1771262953&x-signature=PEVUgjlh29J%2Frf3Zpc07MqSMm%2BI%3D)
![img](https://p6-xtjj-sign.byteimg.com/tos-cn-i-73owjymdk6/658c14c157f34413bbe7a6d6a312709c~tplv-73owjymdk6-jj-mark-v1:0:0:0:0:5o6Y6YeR5oqA5pyv56S-5Yy6IEAg5py65Zmo5a2m5Lmg5LmL5b-DQUk=:q75.awebp?rk3s=f64ab15b&x-expires=1771262953&x-signature=nwgX%2FzMN22c8hbsP4TyVNp9oSLw%3D)
![img](https://p6-xtjj-sign.byteimg.com/tos-cn-i-73owjymdk6/a1e136d5ae224c64b538d20857fcfcb7~tplv-73owjymdk6-jj-mark-v1:0:0:0:0:5o6Y6YeR5oqA5pyv56S-5Yy6IEAg5py65Zmo5a2m5Lmg5LmL5b-DQUk=:q75.awebp?rk3s=f64ab15b&x-expires=1771262953&x-signature=T3Xz6VOo5nK%2FNCe4RoOYYRchwhQ%3D)

**既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!**


**由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新**

**[需要这份系统化资料的朋友,可以戳这里获取](https://gitee.com/vip204888)**