elasticsearch 基于ik分词器的分词查询和模糊匹配_es分词查询模糊匹配

162 阅读2分钟

前言:elasticsearch 查询有很多关键字,查询的条件有固定格式,返回结果提示不明确,让ES使用起来有点不方便的感觉,ES查询方式很多,简单介绍几种使用点的,实用的

此处简单梳理一下最常用的查询

模糊匹配查询

类似 mysql 语法中的 like ‘%value%’

http://localhost:9200/fileindex1/_search

{
  "query": {
  "match\_phrase\_prefix": {
    "name": {
      "query": "测试",
      "max\_expansions": 50
    }
  }}
}


   @Test
    void testSearch2() throws IOException {
        SearchRequest searchRequest = new SearchRequest("fileindex1");
        //构建搜索条件
        SearchSourceBuilder sourceBuilder = new SearchSourceBuilder();
        //查询条件,我们可以使用SearchSourceBuilder工具来实现
        //精确匹配QueryBuilders.termQuery()
        MatchPhrasePrefixQueryBuilder matchQueryBuilder = QueryBuilders.matchPhrasePrefixQuery("name","测试");
        sourceBuilder.query(matchQueryBuilder);
        sourceBuilder.timeout(new TimeValue(60, TimeUnit.SECONDS));
        searchRequest.source(sourceBuilder);
        SearchResponse searchResponse = client.search(searchRequest, RequestOptions.DEFAULT);
        System.out.println(JSON.toJSONString(searchResponse));
        System.out.println("+++++++++++++++++++++++++++++++++++++++++");
        for (SearchHit hit : searchResponse.getHits()) {
            System.out.println(hit.getSourceAsMap());
        }
    }

类似于百度的分词查询

将查询的内容分解,提取。例如 文档数据库 ,就会被分词器 分解为 文档 ,数据 ,数据库等 查询返回更加有广度

分词查询接口

http://localhost:9200/_analyze

{
	"analyzer":"ik\_max\_word",
	"text":"文档数据库"
}


分词解析

{
    "111": [
        {
            "111": "文档",
            "start\_offset": 0,
            "end\_offset": 2,
            "type": "CN\_WORD",
            "position": 0
        },
        {
            "111": "数据库",
            "start\_offset": 2,
            "end\_offset": 5,
            "type": "CN\_WORD",
            "position": 1
        },
        {
            "111": "数据",
            "start\_offset": 2,
            "end\_offset": 4,
            "type": "CN\_WORD",
            "position": 2
        },
        {
            "111": "库",
            "start\_offset": 4,
            "end\_offset": 5,
            "type": "CN\_CHAR",
            "position": 3
        }
    ]
}

查询会将分词解析出的分词

ES查询条件 分词查询

http://localhost:9200/fileindex1/_search

 {
  "query": {
    "match": {
      "name": "文档数据库"
    }
  }
}

  @Test
    void testSearch1() throws IOException {
        SearchRequest searchRequest = new SearchRequest("fileindex1");
        //构建搜索条件
        SearchSourceBuilder sourceBuilder = new SearchSourceBuilder();

        //查询条件,我们可以使用SearchSourceBuilder工具来实现
        //精确匹配QueryBuilders.termQuery()
        MatchQueryBuilder matchQueryBuilder = QueryBuilders.matchQuery("name","测试");
        sourceBuilder.query(matchQueryBuilder);
        sourceBuilder.timeout(new TimeValue(60, TimeUnit.SECONDS));
        searchRequest.source(sourceBuilder);
        SearchResponse searchResponse = client.search(searchRequest, RequestOptions.DEFAULT);
        System.out.println(JSON.toJSONString(searchResponse));
        System.out.println("+++++++++++++++++++++++++++++++++++++++++");
        for (SearchHit hit : searchResponse.getHits()) {
            System.out.println(hit.getSourceAsMap());
        }
    }

根据具体字段精确查询内容

{
  "query": {
    "fuzzy": {
      "attachment.author.keyword": "测试"
    }
  }
}

 // 根据字段精准查询
    @Test
    void testSearch3() throws IOException {
        SearchRequest searchRequest = new SearchRequest("fileindex1");
        //构建搜索条件
        SearchSourceBuilder sourceBuilder = new SearchSourceBuilder();
        //查询条件,我们可以使用SearchSourceBuilder工具来实现
        //精确匹配QueryBuilders.termQuery()
        FuzzyQueryBuilder matchQueryBuilder = QueryBuilders.fuzzyQuery("attachment.author.keyword","user
 ");
        sourceBuilder.query(matchQueryBuilder);
        sourceBuilder.timeout(new TimeValue(60, TimeUnit.SECONDS));


![img](https://p3-xtjj-sign.byteimg.com/tos-cn-i-73owjymdk6/7ab183fa4ae548f3ac2874af28e0741d~tplv-73owjymdk6-jj-mark-v1:0:0:0:0:5o6Y6YeR5oqA5pyv56S-5Yy6IEAg5py65Zmo5a2m5Lmg5LmL5b-DQUk=:q75.awebp?rk3s=f64ab15b&x-expires=1771866882&x-signature=Tlv%2FoVFo537ocpe1Y2GQzTV%2F52U%3D)
![img](https://p3-xtjj-sign.byteimg.com/tos-cn-i-73owjymdk6/f84c7091514e4e37895cc1ae0898c2d0~tplv-73owjymdk6-jj-mark-v1:0:0:0:0:5o6Y6YeR5oqA5pyv56S-5Yy6IEAg5py65Zmo5a2m5Lmg5LmL5b-DQUk=:q75.awebp?rk3s=f64ab15b&x-expires=1771866882&x-signature=FMfV%2B4pKimGbWg6oUd8V%2FF9%2BG0s%3D)
![img](https://p3-xtjj-sign.byteimg.com/tos-cn-i-73owjymdk6/0a83174fa67942789a55b54d012f55f7~tplv-73owjymdk6-jj-mark-v1:0:0:0:0:5o6Y6YeR5oqA5pyv56S-5Yy6IEAg5py65Zmo5a2m5Lmg5LmL5b-DQUk=:q75.awebp?rk3s=f64ab15b&x-expires=1771866882&x-signature=tXYOoiYpOWAzqNwBdARX53NYxxA%3D)

**既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!**


**由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新**

**[需要这份系统化资料的朋友,可以戳这里获取](https://gitee.com/vip204888)**