2、Keras
Keras是一个高级神经网络API,提供了一个Python深度学习库。对于任何初学者来说,这是机器学习的最佳选择,因为与其他库相比,它提供了一种更简单的表达神经网络的方法。Keras由纯Python编写而成并基Tensorflow、Theano以及CNTK后端。
据官方网站称,Keras侧重于4个主要指导原则,即用户友好性,模块化,易扩展性和与Python协作。然而,就速度而言,Keras 相对还是比较弱的。(项目地址:github.com/keras-team/…)
3、scikit-learn
scikit-learn 是一个 Python 的机器学习项目。是一个简单高效的数据挖掘和数据分析工具。基于 NumPy、SciPy 和 matplotlib 构建。Scikit-Learn提供了一致且易于使用的API网格以及随机搜索。其主要优势算法简单而且速度快。Scikit-learn的基本功能主要被分为六大部分:分类,回归,聚类,数据降维,模型选择和数据预处理(项目地址:github.com/scikit-lear…)
4、Pattern
Pattern是一个Web挖掘模块,为数据挖掘,自然语言处理,机器学习,网络分析和网络分析提供工具。它还附带完善的文档,有50多个示例以及通过350多个单元测试。最重要的是,它是免费的!(项目地址:github.com/clips/patte…)
5、Theano
Theano可以说是最成熟的Python深度学习库之一,Theano是以以为希腊毕达哥拉斯哲学家和数学家毕达哥拉斯的妻子的名字命名,Theano的主要功能:与NumPy紧密集成,用符号式语言定义你想要的结果,该框架会对你的程序进行编译,来高效运行于 GPU 或 CPU。
它还提供了定义,优化和评估数学表达式的工具,并且可以在Theano上构建大量其他库,以探索其数据结构。尽管如此,使用Theano还是有一些缺点的; 比如学习它的API可能需要很长时间,而另一些人则认为Theano大模型的编译时间显的它不够高效(项目地址:github.com/Theano/Thea…)
五大数据科学工具
1、SciPy
SciPy (pronounced "Sigh Pie") 是一个开源的数学、科学和工程计算包。SciPy使用NumPy,IPython或Pandas等各种软件包为常用的数学和科学编程任务提供库。当你想操纵计算机上的数字并显示或发布结果时,此工具是一个很好的选择,并且它也是免费的。(项目地址:github.com/scipy/scipy)
2、Dask
Dask 是一个用于分析计算的灵活的并行计算库。同样,通过更改只有几行代码,你可以快速对现有代码进行并行处理,因为它的DataFrame与Pandas库中的相同,它的Array对象的工作方式类似于NumPy能够并行化以纯Python编写。(项目地址:github.com/dask/dask)
3、Numba
此工具是一种开源优化编译器,它使用LLVM编译器基础结构将Python语法编译为机器码。在数据科学应用中使用Numba的主要优势在于它使用NumPy数组来加速应用程序的能力,因为Numba是一个支持NumPy的编译器。就像Scikit-Learn一样,Numba也适用于机器学习应用。(项目地址:github.com/numba/numba)
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!