文章目录
一、数据源
转换之前先看下数据结构
多行存在空值需要过滤,不同的状态(yes、maybe、invited、no)存在多个值,需要转换成(events userid status)的状态
val df = spark.read.format("csv").option("header","true").load("file:///opt/data/event\_attendees.csv")
scala> df.printSchema
root
|-- event: string (nullable = true)
|-- yes: string (nullable = true)
|-- maybe: string (nullable = true)
|-- invited: string (nullable = true)
|-- no: string (nullable = true
二、首先考虑单独两行映射
df.filter(col("yes").isNotNull).select(col("event"),col("yes")).withColumn("userid",explode(split(col("yes")," "))).drop($"yes").withColumn("status",lit("yes")).show(3)
+----------+----------+------+
| event| userid|status|
+----------+----------+------+
|1159822043|1975964455| yes|
|1159822043| 252302513| yes|
|1159822043|4226086795| yes|
+----------+----------+------+
only showing top 3 rows
三、同理将其余隔行依次映射
scala> val no = df.filter(col("no").isNotNull).select(col("event"),col("no")).withColumn("userid",explode(split(col("no")," "))).drop($"no").withColumn("status",lit("no"))
+----------+----------+------+
| event| userid|status|
+----------+----------+------+
|1159822043|3575574655| no|
|1159822043|1077296663| no|
|1186208412|1728988561| no|
+----------+----------+------+
only showing top 3 rows
no: Unit = ()
scala> val invited = df.filter(col("invited").isNotNull).select(col("event"),col("invited")).withColumn("userid",explode(split(col("invited")," "))).drop($"invited").withColumn("status",lit("invited")).show(3)
+----------+----------+-------+
| event| userid| status|
+----------+----------+-------+
|1159822043|1723091036|invited|
|1159822043|3795873583|invited|
|1159822043|4109144917|invited|
+----------+----------+-------+
only showing top 3 rows
invited: Unit = ()
scala> val maybe = df.filter(col("maybe").isNotNull).select(col("event"),col("maybe")).withColumn("userid",explode(split(col("maybe")," "))).drop($"maybe").withColumn("status",lit("maybe")).show(3)
+----------+----------+------+
| event| userid|status|
+----------+----------+------+
|1159822043|2733420590| maybe|
|1159822043| 517546982| maybe|
|1159822043|1350834692| maybe|
+----------+----------+------+
only showing top 3 rows
maybe: Unit = ()



**既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!**
**由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新**
**[需要这份系统化资料的朋友,可以戳这里获取](https://gitee.com/vip204888)**