STM32传感器外设集--心率模块(MAX30102),物联网嵌入式开发开发基础在线培训学校

74 阅读6分钟
        }
        else
        {
            f_temp=un_prev_data-aun_red_buffer[i];
            f_temp/=(un_max-un_min);
            f_temp*=MAX_BRIGHTNESS;
            n_brightness+=(int)f_temp;
            if(n_brightness>MAX_BRIGHTNESS)
                n_brightness=MAX_BRIGHTNESS;
        }
		//send samples and calculation result to terminal program through UART
		if(ch_hr_valid == 1 && n_heart_rate<120)//**/ ch_hr_valid == 1 && ch_spo2_valid ==1 && n_heart_rate<120 && n_sp02<101
		{
			dis_hr = n_heart_rate;
			dis_spo2 = n_sp02;
		}
		else
		{
			dis_hr = 0;
			dis_spo2 = 0;
		}
			printf("HR=%i, ", n_heart_rate); 
			printf("HRvalid=%i, ", ch_hr_valid);
			printf("SpO2=%i, ", n_sp02);
			printf("SPO2Valid=%i\r\n", ch_spo2_valid);
	}
    maxim_heart_rate_and_oxygen_saturation(aun_ir_buffer, n_ir_buffer_length, aun_red_buffer, &n_sp02, &ch_spo2_valid, &n_heart_rate, &ch_hr_valid);
	

}

}


### max30102.c



#include "max30102.h" #include "myiic.h" #include "delay.h"

u8 max30102_Bus_Write(u8 Register_Address, u8 Word_Data) {

/* 采用串行EEPROM随即读取指令序列,连续读取若干字节 */

/* 第1步:发起I2C总线启动信号 */
IIC_Start();

/* 第2步:发起控制字节,高7bit是地址,bit0是读写控制位,0表示写,1表示读 */
IIC_Send_Byte(max30102_WR_address | I2C_WR);	/* 此处是写指令 */

/* 第3步:发送ACK */
if (IIC_Wait_Ack() != 0)
{
	goto cmd_fail;	/* EEPROM器件无应答 */
}

/* 第4步:发送字节地址 */
IIC_Send_Byte(Register_Address);
if (IIC_Wait_Ack() != 0)
{
	goto cmd_fail;	/* EEPROM器件无应答 */
}

/* 第5步:开始写入数据 */
IIC_Send_Byte(Word_Data);

/* 第6步:发送ACK */
if (IIC_Wait_Ack() != 0)
{
	goto cmd_fail;	/* EEPROM器件无应答 */
}

/* 发送I2C总线停止信号 */
IIC_Stop();
return 1;	/* 执行成功 */

cmd_fail: /* 命令执行失败后,切记发送停止信号,避免影响I2C总线上其他设备 / / 发送I2C总线停止信号 */ IIC_Stop(); return 0; }

u8 max30102_Bus_Read(u8 Register_Address) { u8 data;

/* 第1步:发起I2C总线启动信号 */
IIC_Start();

/* 第2步:发起控制字节,高7bit是地址,bit0是读写控制位,0表示写,1表示读 */
IIC_Send_Byte(max30102_WR_address | I2C_WR);	/* 此处是写指令 */

/* 第3步:发送ACK */
if (IIC_Wait_Ack() != 0)
{
	goto cmd_fail;	/* EEPROM器件无应答 */
}

/* 第4步:发送字节地址, */
IIC_Send_Byte((uint8_t)Register_Address);
if (IIC_Wait_Ack() != 0)
{
	goto cmd_fail;	/* EEPROM器件无应答 */
}


/* 第6步:重新启动I2C总线。下面开始读取数据 */
IIC_Start();

/* 第7步:发起控制字节,高7bit是地址,bit0是读写控制位,0表示写,1表示读 */
IIC_Send_Byte(max30102_WR_address | I2C_RD);	/* 此处是读指令 */

/* 第8步:发送ACK */
if (IIC_Wait_Ack() != 0)
{
	goto cmd_fail;	/* EEPROM器件无应答 */
}

/* 第9步:读取数据 */
{
	data = IIC_Read_Byte(0);	/* 读1个字节 */

	IIC_NAck();	/* 最后1个字节读完后,CPU产生NACK信号(驱动SDA = 1) */
}
/* 发送I2C总线停止信号 */
IIC_Stop();
return data;	/* 执行成功 返回data值 */

cmd_fail: /* 命令执行失败后,切记发送停止信号,避免影响I2C总线上其他设备 / / 发送I2C总线停止信号 */ IIC_Stop(); return 0; }

void max30102_FIFO_ReadWords(u8 Register_Address,u16 Word_Data[][2],u8 count) { u8 i=0; u8 no = count; u8 data1, data2; /* 第1步:发起I2C总线启动信号 */ IIC_Start();

/* 第2步:发起控制字节,高7bit是地址,bit0是读写控制位,0表示写,1表示读 */
IIC_Send_Byte(max30102_WR_address | I2C_WR);	/* 此处是写指令 */

/* 第3步:发送ACK */
if (IIC_Wait_Ack() != 0)
{
	goto cmd_fail;	/* EEPROM器件无应答 */
}

/* 第4步:发送字节地址, */
IIC_Send_Byte((uint8_t)Register_Address);
if (IIC_Wait_Ack() != 0)
{
	goto cmd_fail;	/* EEPROM器件无应答 */
}


/* 第6步:重新启动I2C总线。下面开始读取数据 */
IIC_Start();

/* 第7步:发起控制字节,高7bit是地址,bit0是读写控制位,0表示写,1表示读 */
IIC_Send_Byte(max30102_WR_address | I2C_RD);	/* 此处是读指令 */

/* 第8步:发送ACK */
if (IIC_Wait_Ack() != 0)
{
	goto cmd_fail;	/* EEPROM器件无应答 */
}

/* 第9步:读取数据 */
while (no)
{
	data1 = IIC_Read_Byte(0);	
	IIC_Ack();
	data2 = IIC_Read_Byte(0);
	IIC_Ack();
	Word_Data[i][0] = (((u16)data1 << 8) | data2);  //

	
	data1 = IIC_Read_Byte(0);	
	IIC_Ack();
	data2 = IIC_Read_Byte(0);
	if(1==no)
		IIC_NAck();	/* 最后1个字节读完后,CPU产生NACK信号(驱动SDA = 1) */
	else
		IIC_Ack();
	Word_Data[i][1] = (((u16)data1 << 8) | data2); 

	no--;	
	i++;
}
/* 发送I2C总线停止信号 */
IIC_Stop();

cmd_fail: /* 命令执行失败后,切记发送停止信号,避免影响I2C总线上其他设备 / / 发送I2C总线停止信号 */ IIC_Stop(); }

void max30102_FIFO_ReadBytes(u8 Register_Address,u8* Data) { max30102_Bus_Read(REG_INTR_STATUS_1); max30102_Bus_Read(REG_INTR_STATUS_2);

/* 第1步:发起I2C总线启动信号 */
IIC_Start();

/* 第2步:发起控制字节,高7bit是地址,bit0是读写控制位,0表示写,1表示读 */
IIC_Send_Byte(max30102_WR_address | I2C_WR);	/* 此处是写指令 */

/* 第3步:发送ACK */
if (IIC_Wait_Ack() != 0)
{
	goto cmd_fail;	/* EEPROM器件无应答 */
}

/* 第4步:发送字节地址, */
IIC_Send_Byte((uint8_t)Register_Address);
if (IIC_Wait_Ack() != 0)
{
	goto cmd_fail;	/* EEPROM器件无应答 */
}


/* 第6步:重新启动I2C总线。下面开始读取数据 */
IIC_Start();

/* 第7步:发起控制字节,高7bit是地址,bit0是读写控制位,0表示写,1表示读 */
IIC_Send_Byte(max30102_WR_address | I2C_RD);	/* 此处是读指令 */

/* 第8步:发送ACK */
if (IIC_Wait_Ack() != 0)
{
	goto cmd_fail;	/* EEPROM器件无应答 */
}

/* 第9步:读取数据 */
Data[0] = IIC_Read_Byte(1);	
Data[1] = IIC_Read_Byte(1);	
Data[2] = IIC_Read_Byte(1);	
Data[3] = IIC_Read_Byte(1);
Data[4] = IIC_Read_Byte(1);	
Data[5] = IIC_Read_Byte(0);
/* 最后1个字节读完后,CPU产生NACK信号(驱动SDA = 1) */
/* 发送I2C总线停止信号 */
IIC_Stop();

cmd_fail: /* 命令执行失败后,切记发送停止信号,避免影响I2C总线上其他设备 / / 发送I2C总线停止信号 */ IIC_Stop();

// u8 i; // u8 fifo_wr_ptr; // u8 firo_rd_ptr; // u8 number_tp_read; // //Get the FIFO_WR_PTR // fifo_wr_ptr = max30102_Bus_Read(REG_FIFO_WR_PTR); // //Get the FIFO_RD_PTR // firo_rd_ptr = max30102_Bus_Read(REG_FIFO_RD_PTR); // // number_tp_read = fifo_wr_ptr - firo_rd_ptr; // // //for(i=0;i<number_tp_read;i++){ // if(number_tp_read>0){ // IIC_ReadBytes(max30102_WR_address,REG_FIFO_DATA,Data,6); // }

//max30102_Bus_Write(REG_FIFO_RD_PTR,fifo_wr_ptr);

}

void max30102_init(void) { GPIO_InitTypeDef GPIO_InitStructure;

RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB,ENABLE);	
GPIO_InitStructure.GPIO_Pin  = GPIO_Pin_14;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU;
GPIO_Init(GPIOB, &GPIO_InitStructure);

IIC_Init();

max30102_reset();

// max30102_Bus_Write(REG_MODE_CONFIG, 0x0b); //mode configuration : temp_en[3] MODE[2:0]=010 HR only enabled 011 SP02 enabled // max30102_Bus_Write(REG_INTR_STATUS_2, 0xF0); //open all of interrupt // max30102_Bus_Write(REG_INTR_STATUS_1, 0x00); //all interrupt clear // max30102_Bus_Write(REG_INTR_ENABLE_2, 0x02); //DIE_TEMP_RDY_EN // max30102_Bus_Write(REG_TEMP_CONFIG, 0x01); //SET TEMP_EN

// max30102_Bus_Write(REG_SPO2_CONFIG, 0x47); //SPO2_SR[4:2]=001 100 per second LED_PW[1:0]=11 16BITS

// max30102_Bus_Write(REG_LED1_PA, 0x47); // max30102_Bus_Write(REG_LED2_PA, 0x47);

max30102_Bus_Write(REG_INTR_ENABLE_1,0xc0);	// INTR setting
max30102_Bus_Write(REG_INTR_ENABLE_2,0x00);
max30102_Bus_Write(REG_FIFO_WR_PTR,0x00);  	//FIFO_WR_PTR[4:0]
max30102_Bus_Write(REG_OVF_COUNTER,0x00);  	//OVF_COUNTER[4:0]
max30102_Bus_Write(REG_FIFO_RD_PTR,0x00);  	//FIFO_RD_PTR[4:0]
max30102_Bus_Write(REG_FIFO_CONFIG,0x0f);  	//sample avg = 1, fifo rollover=false, fifo almost full = 17
max30102_Bus_Write(REG_MODE_CONFIG,0x03);  	//0x02 for Red only, 0x03 for SpO2 mode 0x07 multimode LED
max30102_Bus_Write(REG_SPO2_CONFIG,0x27);  	// SPO2_ADC range = 4096nA, SPO2 sample rate (100 Hz), LED pulseWidth (400uS)  
max30102_Bus_Write(REG_LED1_PA,0x24);   	//Choose value for ~ 7mA for LED1
max30102_Bus_Write(REG_LED2_PA,0x24);   	// Choose value for ~ 7mA for LED2
max30102_Bus_Write(REG_PILOT_PA,0x7f);   	// Choose value for ~ 25mA for Pilot LED


// // Interrupt Enable 1 Register. Set PPG_RDY_EN (data available in FIFO) // max30102_Bus_Write(0x2, 1<<6);

// // FIFO configuration register // // SMP_AVE: 16 samples averaged per FIFO sample // // FIFO_ROLLOVER_EN=1 // //max30102_Bus_Write(0x8, 1<<4); // max30102_Bus_Write(0x8, (0<<5) | 1<<4);

// // Mode Configuration Register // // SPO2 mode // max30102_Bus_Write(0x9, 3);

// // SPO2 Configuration Register // max30102_Bus_Write(0xa, // (3<<5) // SPO2_ADC_RGE 2 = full scale 8192 nA (LSB size 31.25pA); 3 = 16384nA // | (1<<2) // sample rate: 0 = 50sps; 1 = 100sps; 2 = 200sps // | (3<<0) // LED_PW 3 = 411μs, ADC resolution 18 bits // );

// // LED1 (red) power (0 = 0mA; 255 = 50mA) // max30102_Bus_Write(0xc, 0xb0);

// // LED (IR) power // max30102_Bus_Write(0xd, 0xa0);

}

void max30102_reset(void) { max30102_Bus_Write(REG_MODE_CONFIG,0x40); max30102_Bus_Write(REG_MODE_CONFIG,0x40); }

void maxim_max30102_write_reg(uint8_t uch_addr, uint8_t uch_data) { // char ach_i2c_data[2]; // ach_i2c_data[0]=uch_addr; // ach_i2c_data[1]=uch_data; // // IIC_WriteBytes(I2C_WRITE_ADDR, ach_i2c_data, 2); IIC_Write_One_Byte(I2C_WRITE_ADDR,uch_addr,uch_data); }

void maxim_max30102_read_reg(uint8_t uch_addr, uint8_t *puch_data) { // char ch_i2c_data; // ch_i2c_data=uch_addr; // IIC_WriteBytes(I2C_WRITE_ADDR, &ch_i2c_data, 1); // // i2c.read(I2C_READ_ADDR, &ch_i2c_data, 1); //
// *puch_data=(uint8_t) ch_i2c_data; IIC_Read_One_Byte(I2C_WRITE_ADDR,uch_addr,puch_data); }

void maxim_max30102_read_fifo(uint32_t *pun_red_led, uint32_t *pun_ir_led) { uint32_t un_temp; unsigned char uch_temp; char ach_i2c_data[6]; *pun_red_led=0; *pun_ir_led=0;

//read and clear status register maxim_max30102_read_reg(REG_INTR_STATUS_1, &uch_temp); maxim_max30102_read_reg(REG_INTR_STATUS_2, &uch_temp);

IIC_ReadBytes(I2C_WRITE_ADDR,REG_FIFO_DATA,(u8 *)ach_i2c_data,6);

un_temp=(unsigned char) ach_i2c_data[0]; un_temp<<=16; *pun_red_led+=un_temp; un_temp=(unsigned char) ach_i2c_data[1]; un_temp<<=8; *pun_red_led+=un_temp; un_temp=(unsigned char) ach_i2c_data[2]; *pun_red_led+=un_temp;

un_temp=(unsigned char) ach_i2c_data[3]; un_temp<<=16; *pun_ir_led+=un_temp; un_temp=(unsigned char) ach_i2c_data[4]; un_temp<<=8; *pun_ir_led+=un_temp; un_temp=(unsigned char) ach_i2c_data[5]; *pun_ir_led+=un_temp; *pun_red_led&=0x03FFFF; //Mask MSB [23:18] *pun_ir_led&=0x03FFFF; //Mask MSB [23:18] }


### max30102.h



#ifndef __MYIIC_H #define __MYIIC_H #include "sys.h" //

#define MAX30102_INT PBin(9)

#define I2C_WR 0 /* 写控制bit / #define I2C_RD 1 / 读控制bit */

#define max30102_WR_address 0xAE

#define I2C_WRITE_ADDR 0xAE #define I2C_READ_ADDR 0xAF

//register addresses #define REG_INTR_STATUS_1 0x00 #define REG_INTR_STATUS_2 0x01 #define REG_INTR_ENABLE_1 0x02 #define REG_INTR_ENABLE_2 0x03 #define REG_FIFO_WR_PTR 0x04 #define REG_OVF_COUNTER 0x05 #define REG_FIFO_RD_PTR 0x06 #define REG_FIFO_DATA 0x07 #define REG_FIFO_CONFIG 0x08 #define REG_MODE_CONFIG 0x09 #define REG_SPO2_CONFIG 0x0A #define REG_LED1_PA 0x0C #define REG_LED2_PA 0x0D #define REG_PILOT_PA 0x10 #define REG_MULTI_LED_CTRL1 0x11 #define REG_MULTI_LED_CTRL2 0x12 #define REG_TEMP_INTR 0x1F #define REG_TEMP_FRAC 0x20 #define REG_TEMP_CONFIG 0x21 #define REG_PROX_INT_THRESH 0x30 #define REG_REV_ID 0xFE #define REG_PART_ID 0xFF

void max30102_init(void);
void max30102_reset(void); u8 max30102_Bus_Write(u8 Register_Address, u8 Word_Data); u8 max30102_Bus_Read(u8 Register_Address); void max30102_FIFO_ReadWords(u8 Register_Address,u16 Word_Data[][2],u8 count); void max30102_FIFO_ReadBytes(u8 Register_Address,u8* Data);

void maxim_max30102_write_reg(uint8_t uch_addr, uint8_t uch_data); void maxim_max30102_read_reg(uint8_t uch_addr, uint8_t *puch_data); void maxim_max30102_read_fifo(uint32_t *pun_red_led, uint32_t *pun_ir_led); #endif


### myiic.c



#include "myiic.h" #include "delay.h"

//初始化IIC void IIC_Init(void) { GPIO_InitTypeDef GPIO_InitStructure; //RCC->APB2ENR|=1<<4;//先使能外设IO PORTC时钟 RCC_APB2PeriphClockCmd( RCC_APB2Periph_GPIOB, ENABLE );

GPIO_InitStructure.GPIO_Pin = GPIO_Pin_7|GPIO_Pin_8;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP ;   //推挽输出
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init(GPIOB, &GPIO_InitStructure);

IIC_SCL=1;
IIC_SDA=1;

} //产生IIC起始信号 void IIC_Start(void) { SDA_OUT(); //sda线输出 IIC_SDA=1; IIC_SCL=1; delay_us(4); IIC_SDA=0;//START:when CLK is high,DATA change form high to low delay_us(4); IIC_SCL=0;//钳住I2C总线,准备发送或接收数据 } //产生IIC停止信号 void IIC_Stop(void) { SDA_OUT();//sda线输出 IIC_SCL=0; IIC_SDA=0;//STOP:when CLK is high DATA change form low to high delay_us(4); IIC_SCL=1; IIC_SDA=1;//发送I2C总线结束信号 delay_us(4); } //等待应答信号到来 //返回值:1,接收应答失败 // 0,接收应答成功 u8 IIC_Wait_Ack(void) { u8 ucErrTime=0; SDA_IN(); //SDA设置为输入
IIC_SDA=1;delay_us(1); IIC_SCL=1;delay_us(1); while(READ_SDA) { ucErrTime++; if(ucErrTime>250) { IIC_Stop(); return 1; } } IIC_SCL=0;//时钟输出0 return 0;
} //产生ACK应答 void IIC_Ack(void) { IIC_SCL=0; SDA_OUT(); IIC_SDA=0; delay_us(2); IIC_SCL=1; delay_us(2); IIC_SCL=0; } //不产生ACK应答 void IIC_NAck(void) { IIC_SCL=0; SDA_OUT(); IIC_SDA=1; delay_us(2); IIC_SCL=1; delay_us(2); IIC_SCL=0; } //IIC发送一个字节 //返回从机有无应答 //1,有应答 //0,无应答 void IIC_Send_Byte(u8 txd) {
u8 t;
SDA_OUT(); IIC_SCL=0;//拉低时钟开始数据传输 for(t=0;t<8;t++) {
IIC_SDA=(txd&0x80)>>7; txd<<=1; delay_us(2); //对TEA5767这三个延时都是必须的 IIC_SCL=1; delay_us(2); IIC_SCL=0; delay_us(2); } } //读1个字节,ack=1时,发送ACK,ack=0,发送nACK
u8 IIC_Read_Byte(unsigned char ack) { unsigned char i,receive=0; SDA_IN();//SDA设置为输入 for(i=0;i<8;i++ ) { IIC_SCL=0; delay_us(2); IIC_SCL=1; receive<<=1; if(READ_SDA)receive++;
delay_us(1); } if (!ack) IIC_NAck();//发送nACK else IIC_Ack(); //发送ACK
return receive; }

void IIC_WriteBytes(u8 WriteAddr,u8* data,u8 dataLength) { u8 i; IIC_Start();

IIC_Send_Byte(WriteAddr);	    //发送写命令
IIC_Wait_Ack();

for(i=0;i<dataLength;i++)
{
	IIC_Send_Byte(data[i]);
	IIC_Wait_Ack();
}				    	   
IIC_Stop();//产生一个停止条件 
delay_ms(10);	 

}

void IIC_ReadBytes(u8 deviceAddr, u8 writeAddr,u8* data,u8 dataLength) { u8 i; IIC_Start();

IIC_Send_Byte(deviceAddr);	    //发送写命令
IIC_Wait_Ack();
IIC_Send_Byte(writeAddr);
IIC_Wait_Ack();
IIC_Send_Byte(deviceAddr|0X01);//进入接收模式			   
IIC_Wait_Ack();

for(i=0;i<dataLength-1;i++)
{
	data[i] = IIC_Read_Byte(1);
}		
data[dataLength-1] = IIC_Read_Byte(0);	
IIC_Stop();//产生一个停止条件 
delay_ms(10);	 

}

void IIC_Read_One_Byte(u8 daddr,u8 addr,u8* data) { IIC_Start();

IIC_Send_Byte(daddr);	   //发送写命令
IIC_Wait_Ack();
IIC_Send_Byte(addr);//发送地址
IIC_Wait_Ack();		 
IIC_Start();  	 	   
IIC_Send_Byte(daddr|0X01);//进入接收模式			   
IIC_Wait_Ack();	 
*data = IIC_Read_Byte(0);		   
IIC_Stop();//产生一个停止条件	    

}

void IIC_Write_One_Byte(u8 daddr,u8 addr,u8 data) { IIC_Start();

IIC_Send_Byte(daddr);	    //发送写命令
IIC_Wait_Ack();
IIC_Send_Byte(addr);//发送地址
IIC_Wait_Ack();	   	 										  		   
IIC_Send_Byte(data);     //发送字节							   
IIC_Wait_Ack();  		    	   
IIC_Stop();//产生一个停止条件 
delay_ms(10);	 

}


### myiic.h



#ifndef __MAX30102_H #define __MAX30102_H #include "sys.h" //

//IO方向设置 #define SDA_IN() {GPIOB->CRH&=0XFFFFFFF0;GPIOB->CRH|=4;} #define SDA_OUT() {GPIOB->CRH&=0XFFFFFFF0;GPIOB->CRH|=7;}

//IO操作函数 #define IIC_SCL PBout(7) //SCL #define IIC_SDA PBout(8) //SDA #define READ_SDA PBin(8) //输入SDA

//IIC所有操作函数 void IIC_Init(void); //初始化IIC的IO口 void IIC_Start(void); //发送IIC开始信号 void IIC_Stop(void); //发送IIC停止信号 void IIC_Send_Byte(u8 txd); //IIC发送一个字节 u8 IIC_Read_Byte(unsigned char ack);//IIC读取一个字节 u8 IIC_Wait_Ack(void); //IIC等待ACK信号 void IIC_Ack(void); //IIC发送ACK信号 void IIC_NAck(void); //IIC不发送ACK信号

void IIC_Write_One_Byte(u8 daddr,u8 addr,u8 data); void IIC_Read_One_Byte(u8 daddr,u8 addr,u8* data);

void IIC_WriteBytes(u8 WriteAddr,u8* data,u8 dataLength); void IIC_ReadBytes(u8 deviceAddr, u8 writeAddr,u8* data,u8 dataLength); #endif


### algorithm.c



/** \file algorithm.c ****************************************************** *

  • Project: MAXREFDES117#
  • Filename: algorithm.cpp
  • Description: This module calculates the heart rate/SpO2 level

  • This code follows the following naming conventions:
  • char ch_pmod_value
  • char (array) s_pmod_s_string[16]
  • float f_pmod_value
  • int32_t n_pmod_value
  • int32_t (array) an_pmod_value[16]
  • int16_t w_pmod_value
  • int16_t (array) aw_pmod_value[16]
  • uint16_t uw_pmod_value
  • uint16_t (array) auw_pmod_value[16]
  • uint8_t uch_pmod_value
  • uint8_t (array) auch_pmod_buffer[16]
  • uint32_t un_pmod_value
  • int32_t * pn_pmod_value
  • ------------------------------------------------------------------------- / /******************************************************************************
  • Copyright (C) 2016 Maxim Integrated Products, Inc., All Rights Reserved.
  • Permission is hereby granted, free of charge, to any person obtaining a
  • copy of this software and associated documentation files (the "Software"),
  • to deal in the Software without restriction, including without limitation
  • the rights to use, copy, modify, merge, publish, distribute, sublicense,
  • and/or sell copies of the Software, and to permit persons to whom the
  • Software is furnished to do so, subject to the following conditions:
  • The above copyright notice and this permission notice shall be included
  • in all copies or substantial portions of the Software.
  • THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
  • OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  • MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
  • IN NO EVENT SHALL MAXIM INTEGRATED BE LIABLE FOR ANY CLAIM, DAMAGES
  • OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  • ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  • OTHER DEALINGS IN THE SOFTWARE.
  • Except as contained in this notice, the name of Maxim Integrated
  • Products, Inc. shall not be used except as stated in the Maxim Integrated
  • Products, Inc. Branding Policy.
  • The mere transfer of this software does not imply any licenses
  • of trade secrets, proprietary technology, copyrights, patents,
  • trademarks, maskwork rights, or any other form of intellectual
  • property whatsoever. Maxim Integrated Products, Inc. retains all
  • ownership rights.

*/ #include "algorithm.h"

const uint16_t auw_hamm[31]={ 41, 276, 512, 276, 41 }; //Hamm= long16(512* hamming(5)'); //uch_spo2_table is computed as -45.060ratioAverage ratioAverage + 30.354 *ratioAverage + 94.845 ; const uint8_t uch_spo2_table[184]={ 95, 95, 95, 96, 96, 96, 97, 97, 97, 97, 97, 98, 98, 98, 98, 98, 99, 99, 99, 99, 99, 99, 99, 99, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 99, 99, 99, 99, 99, 99, 99, 99, 98, 98, 98, 98, 98, 98, 97, 97, 97, 97, 96, 96, 96, 96, 95, 95, 95, 94, 94, 94, 93, 93, 93, 92, 92, 92, 91, 91, 90, 90, 89, 89, 89, 88, 88, 87, 87, 86, 86, 85, 85, 84, 84, 83, 82, 82, 81, 81, 80, 80, 79, 78, 78, 77, 76, 76, 75, 74, 74, 73, 72, 72, 71, 70, 69, 69, 68, 67, 66, 66, 65, 64, 63, 62, 62, 61, 60, 59, 58, 57, 56, 56, 55, 54, 53, 52, 51, 50, 49, 48, 47, 46, 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 33, 31, 30, 29, 28, 27, 26, 25, 23, 22, 21, 20, 19, 17, 16, 15, 14, 12, 11, 10, 9, 7, 6, 5, 3, 2, 1 } ; static int32_t an_dx[ BUFFER_SIZE-MA4_SIZE]; // delta static int32_t an_x[ BUFFER_SIZE]; //ir static int32_t an_y[ BUFFER_SIZE]; //red

void maxim_heart_rate_and_oxygen_saturation(uint32_t *pun_ir_buffer, int32_t n_ir_buffer_length, uint32_t *pun_red_buffer, int32_t *pn_spo2, int8_t *pch_spo2_valid, int32_t pn_heart_rate, int8_t pch_hr_valid) /

  • \brief Calculate the heart rate and SpO2 level

  • \par Details

  •           By detecting  peaks of PPG cycle and corresponding AC/DC of red/infra-red signal, the ratio for the SPO2 is computed.
    
  •           Since this algorithm is aiming for Arm M0/M3. formaula for SPO2 did not achieve the accuracy due to register overflow.
    
  •           Thus, accurate SPO2 is precalculated and save longo uch_spo2_table[] per each ratio.
    
  • \param[in] *pun_ir_buffer - IR sensor data buffer

  • \param[in] n_ir_buffer_length - IR sensor data buffer length

  • \param[in] *pun_red_buffer - Red sensor data buffer

  • \param[out] *pn_spo2 - Calculated SpO2 value

  • \param[out] *pch_spo2_valid - 1 if the calculated SpO2 value is valid

  • \param[out] *pn_heart_rate - Calculated heart rate value

  • \param[out] *pch_hr_valid - 1 if the calculated heart rate value is valid

  • \retval None */ { uint32_t un_ir_mean ,un_only_once ; int32_t k ,n_i_ratio_count; int32_t i, s, m, n_exact_ir_valley_locs_count ,n_middle_idx; int32_t n_th1, n_npks,n_c_min;
    int32_t an_ir_valley_locs[15] ; int32_t an_exact_ir_valley_locs[15] ; int32_t an_dx_peak_locs[15] ; int32_t n_peak_interval_sum;

    int32_t n_y_ac, n_x_ac; int32_t n_spo2_calc; int32_t n_y_dc_max, n_x_dc_max; int32_t n_y_dc_max_idx, n_x_dc_max_idx; int32_t an_ratio[5],n_ratio_average; int32_t n_nume, n_denom ; // remove DC of ir signal
    un_ir_mean =0; for (k=0 ; k<n_ir_buffer_length ; k++ ) un_ir_mean += pun_ir_buffer[k] ; un_ir_mean =un_ir_mean/n_ir_buffer_length ; for (k=0 ; k<n_ir_buffer_length ; k++ ) an_x[k] = pun_ir_buffer[k] - un_ir_mean ;

    // 4 pt Moving Average for(k=0; k< BUFFER_SIZE-MA4_SIZE; k++){ n_denom= ( an_x[k]+an_x[k+1]+ an_x[k+2]+ an_x[k+3]); an_x[k]= n_denom/(int32_t)4; }

    // get difference of smoothed IR signal

    for( k=0; k<BUFFER_SIZE-MA4_SIZE-1; k++) an_dx[k]= (an_x[k+1]- an_x[k]);

    // 2-pt Moving Average to an_dx for(k=0; k< BUFFER_SIZE-MA4_SIZE-2; k++){ an_dx[k] = ( an_dx[k]+an_dx[k+1])/2 ; }

    // hamming window // flip wave form so that we can detect valley with peak detector for ( i=0 ; i<BUFFER_SIZE-HAMMING_SIZE-MA4_SIZE-2 ;i++){ s= 0; for( k=i; k<i+ HAMMING_SIZE ;k++){ s -= an_dx[k] *auw_hamm[k-i] ; } an_dx[i]= s/ (int32_t)1146; // divide by sum of auw_hamm }

    n_th1=0; // threshold calculation for ( k=0 ; k<BUFFER_SIZE-HAMMING_SIZE ;k++){ n_th1 += ((an_dx[k]>0)? an_dx[k] : ((int32_t)0-an_dx[k])) ; } n_th1= n_th1/ ( BUFFER_SIZE-HAMMING_SIZE); // peak location is acutally index for sharpest location of raw signal since we flipped the signal
    maxim_find_peaks( an_dx_peak_locs, &n_npks, an_dx, BUFFER_SIZE-HAMMING_SIZE, n_th1, 8, 5 );//peak_height, peak_distance, max_num_peaks

    n_peak_interval_sum =0; if (n_npks>=2){ for (k=1; k<n_npks; k++) n_peak_interval_sum += (an_dx_peak_locs[k]-an_dx_peak_locs[k -1]); n_peak_interval_sum=n_peak_interval_sum/(n_npks-1); *pn_heart_rate=(int32_t)(6000/n_peak_interval_sum);// beats per minutes *pch_hr_valid = 1; } else { *pn_heart_rate = -999; *pch_hr_valid = 0; }

    for ( k=0 ; k<n_npks ;k++) an_ir_valley_locs[k]=an_dx_peak_locs[k]+HAMMING_SIZE/2;

    // raw value : RED(=y) and IR(=X) // we need to assess DC and AC value of ir and red PPG. for (k=0 ; k<n_ir_buffer_length ; k++ ) { an_x[k] = pun_ir_buffer[k] ; an_y[k] = pun_red_buffer[k] ; }

    // find precise min near an_ir_valley_locs n_exact_ir_valley_locs_count =0; for(k=0 ; k<n_npks ;k++){ un_only_once =1; m=an_ir_valley_locs[k]; n_c_min= 16777216;//2^24; if (m+5 < BUFFER_SIZE-HAMMING_SIZE && m-5 >0){ for(i= m-5;i<m+5; i++) if (an_x[i]<n_c_min){ if (un_only_once >0){ un_only_once =0; } n_c_min= an_x[i] ; an_exact_ir_valley_locs[k]=i; } if (un_only_once ==0) n_exact_ir_valley_locs_count ++ ; } } if (n_exact_ir_valley_locs_count <2 ){ *pn_spo2 = -999 ; // do not use SPO2 since signal ratio is out of range *pch_spo2_valid = 0; return; } // 4 pt MA for(k=0; k< BUFFER_SIZE-MA4_SIZE; k++){ an_x[k]=( an_x[k]+an_x[k+1]+ an_x[k+2]+ an_x[k+3])/(int32_t)4; an_y[k]=( an_y[k]+an_y[k+1]+ an_y[k+2]+ an_y[k+3])/(int32_t)4; }

    //using an_exact_ir_valley_locs , find ir-red DC andir-red AC for SPO2 calibration ratio //finding AC/DC maximum of raw ir * red between two valley locations n_ratio_average =0; n_i_ratio_count =0;

    for(k=0; k< 5; k++) an_ratio[k]=0; for (k=0; k< n_exact_ir_valley_locs_count; k++){ if (an_exact_ir_valley_locs[k] > BUFFER_SIZE ){
    *pn_spo2 = -999 ; // do not use SPO2 since valley loc is out of range *pch_spo2_valid = 0; return; } } // find max between two valley locations // and use ratio betwen AC compoent of Ir & Red and DC compoent of Ir & Red for SPO2

    for (k=0; k< n_exact_ir_valley_locs_count-1; k++){ n_y_dc_max= -16777216 ; n_x_dc_max= - 16777216; if (an_exact_ir_valley_locs[k+1]-an_exact_ir_valley_locs[k] >10){ for (i=an_exact_ir_valley_locs[k]; i< an_exact_ir_valley_locs[k+1]; i++){ if (an_x[i]> n_x_dc_max) {n_x_dc_max =an_x[i];n_x_dc_max_idx =i; } if (an_y[i]> n_y_dc_max) {n_y_dc_max =an_y[i];n_y_dc_max_idx=i;} } n_y_ac= (an_y[an_exact_ir_valley_locs[k+1]] - an_y[an_exact_ir_valley_locs[k] ] )*(n_y_dc_max_idx -an_exact_ir_valley_locs[k]); //red n_y_ac= an_y[an_exact_ir_valley_locs[k]] + n_y_ac/ (an_exact_ir_valley_locs[k+1] - an_exact_ir_valley_locs[k]) ;

          n_y_ac=  an_y[n_y_dc_max_idx] - n_y_ac;    // subracting linear DC compoenents from raw 
          n_x_ac= (an_x[an_exact_ir_valley_locs[k+1]] - an_x[an_exact_ir_valley_locs[k] ] )*(n_x_dc_max_idx -an_exact_ir_valley_locs[k]); // ir
          n_x_ac=  an_x[an_exact_ir_valley_locs[k]] + n_x_ac/ (an_exact_ir_valley_locs[k+1] - an_exact_ir_valley_locs[k]); 
          n_x_ac=  an_x[n_y_dc_max_idx] - n_x_ac;      // subracting linear DC compoenents from raw 
          n_nume=( n_y_ac *n_x_dc_max)>>7 ; //prepare X100 to preserve floating value
          n_denom= ( n_x_ac *n_y_dc_max)>>7;
          if (n_denom>0  && n_i_ratio_count <5 &&  n_nume != 0)
          {   
              an_ratio[n_i_ratio_count]= (n_nume*20)/n_denom ; //formular is ( n_y_ac *n_x_dc_max) / ( n_x_ac *n_y_dc_max) ;  ///*************************n_nume原来是*100************************//
              n_i_ratio_count++;
          }
      }
    

    }

    maxim_sort_ascend(an_ratio, n_i_ratio_count); n_middle_idx= n_i_ratio_count/2;

    if (n_middle_idx >1) n_ratio_average =( an_ratio[n_middle_idx-1] +an_ratio[n_middle_idx])/2; // use median else n_ratio_average = an_ratio[n_middle_idx ];

    if( n_ratio_average>2 && n_ratio_average <184){ n_spo2_calc= uch_spo2_table[n_ratio_average] ; pn_spo2 = n_spo2_calc ; pch_spo2_valid = 1;// float_SPO2 = -45.060n_ratio_average n_ratio_average/10000 + 30.354 *n_ratio_average/100 + 94.845 ; // for comparison with table } else{ *pn_spo2 = -999 ; // do not use SPO2 since signal ratio is out of range *pch_spo2_valid = 0; } }

void maxim_find_peaks(int32_t *pn_locs, int32_t pn_npks, int32_t pn_x, int32_t n_size, int32_t n_min_height, int32_t n_min_distance, int32_t n_max_num) /

  • \brief Find peaks
  • \par Details
  •           Find at most MAX_NUM peaks above MIN_HEIGHT separated by at least MIN_DISTANCE
    
  • \retval None */ { maxim_peaks_above_min_height( pn_locs, pn_npks, pn_x, n_size, n_min_height ); maxim_remove_close_peaks( pn_locs, pn_npks, pn_x, n_min_distance ); *pn_npks = min( *pn_npks, n_max_num );

收集整理了一份《2024年最新物联网嵌入式全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升的朋友。 img img

如果你需要这些资料,可以戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人

都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!