【机器学习】——神经网络与深度学习_机器学习 深度学习 神经网络

100 阅读3分钟

4、反向传播算法

二、深度学习

1、自编码算法AutorEncoder

2、自组织编码深度网络

①栈式AutorEncoder自动编码器

②Sparse Coding稀疏编码

3、卷积神经网络模型(续下次)

拓展:


引入

人工神经网络ANN是由大量处理单位(人工神经元)经广泛互连而组成的人工网络,以模拟脑神经系统的结构与功能。ANN可看作以人工神经元为节点,用有向加权弧连接起来的有向图,有向弧的权重表示相互连接的两个神经元间相互作用的强弱。深度学习算法是人工神经网络算法的改进,提高了神经网络算法的性能和应用。


一、神经网络及其主要算法

1、前馈神经网络

构成前馈神经网络的各神经元接收前一级输入,并输入到下一级,无反馈,可用一有向无环图表示。图的节点分为两类——输入节点和计算单元。每个计算单元可有任意个输入但只有一个输出,而输出可耦合到任意多个其他节点输入(输出的是同一个值给很多人)。前馈网络通常分为不同层,通常认为输入为第一层,所以单层计算单元的网络实际上是一个两层网络,输入和输出节点可与外界相连,直接受环境影响,称为可见层,其他中间层称为隐层。

2、感知器

感知器模型是为研究大脑的存储、学习和认知过程而提出的一类具有自学习能力的神经网络模型,把神经网络的研究从纯理论探讨引向了工程实现。它是一种双层神经网络模型,一层为输入层,另一层具有计算单元,可以通过监督学习建立模式判别的能力。

img img

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化的资料的朋友,可以戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!