学习pandas全套代码【超详细】数据查看、输入输出、选取、集成、清洗

61 阅读19分钟

| F | 123 | 138 | 55 | | J | 100 | 70 | 63 |

cond = (df.Python > 70) & (df.Math > 70)
df[cond]


PythonMathEn
F12313855
cond = df.index.isin(['C','E','H','K']) # 判断数据是否在数组中
df[cond] # 删选出来了符合条件的数据


PythonMathEn
C91471
E17171
H5917140
K793772

4.5 赋值操作

df['Python']['A'] = 150 # 修改某个位置的值
df


PythonMathEn
A1505248
B786294
C91471
D861521
E17171
F12313855
H5917140
I68858
J1007063
K793772
df['Java'] = np.random.randint(0,151,size = 10) # 新增加一列
df


PythonMathEnJava
A150524865
B78629425
C9147182
D861521139
E1717167
F12313855145
H591714053
I68858141
J100706311
K793772127
df.loc[['C','D','E'],'Math'] = 147 # 修改多个人的成绩
df


PythonMathEnJava
A150524865
B78629425
C91477182
D8614721139
E11477167
F12313855145
H591714053
I68858141
J100706311
K793772127
cond = df < 60
df[cond] = 60 # where 条件操作,符合这条件值,修改,不符合,不改变


df


PythonMathEnJava
A150606065
B78629460
C601477182
D8614760139
E601477167
F12313860145
H606014060
I686060141
J100706360
K796072127
df.iloc[3::3,[0,2]] += 100


df


PythonMathEnJava
A150606065
B78629460
C601477182
D186147160139
E601477167
F12313860145
H1606024060
I686060141
J100706360
K17960172127

第五部分:数据集成

5.1 concat数据串联

# np.concatenate NumPy数据集成
df1 = pd.DataFrame(np.random.randint(0,151,size = (10,3)),
                   columns=['Python','Math','En'],
                   index = list('ABCDEFHIJK'))
df2 = pd.DataFrame(np.random.randint(0,151,size = (10,3)),
                   columns = ['Python','Math','En'],
                   index = list('QWRTUYOPLM'))
df3 = pd.DataFrame(np.random.randint(0,151,size = (10,2)),
                  columns=['Java','Chinese'],index = list('ABCDEFHIJK'))


pd.concat([df1,df2],axis = 0) # axis = 0变是行合并,行增加


PythonMathEn
A1087453
B981647
C7177128
D9123131
E2590132
F10510686
H1464281
I83436
J102798
K921147
Q1195943
W2062106
R7782128
T4411915
U4914962
Y949088
O10572133
P87109123
L125140149
M14822102
pd.concat([df1,df3],axis = 1) # axis = 1表示列增加


PythonMathEnJavaChinese
A10874536181
B981647117117
C7177128484
D9123131149115
E259013211373
F1051068614026
H1464281117118
I8343610391
J1027984320
K9211479372
df1.append(df2) # append追加,在行后面直接进行追加


PythonC++MathEn
A10859.07453
B984.01647
C7127.077128
D917.0123131
E2560.090132
F105136.010686
H146112.04281
I83120.0436
J10228.0798
K9253.01147
Q119NaN5943
W20NaN62106
R77NaN82128
T44NaN11915
U49NaN14962
Y94NaN9088
O105NaN72133
P87NaN109123
L125NaN140149
M148NaN22102
df1.append(df3) # 出现空数据,原因在于:df1的列索引和df3列索引不一致


PythonC++MathEnJavaChinese
A108.059.074.053.0NaNNaN
B98.04.016.047.0NaNNaN
C71.027.077.0128.0NaNNaN
D9.017.0123.0131.0NaNNaN
E25.060.090.0132.0NaNNaN
F105.0136.0106.086.0NaNNaN
H146.0112.042.081.0NaNNaN
I83.0120.04.036.0NaNNaN
J102.028.079.08.0NaNNaN
K92.053.011.047.0NaNNaN
ANaNNaNNaNNaN61.081.0
BNaNNaNNaNNaN117.0117.0
CNaNNaNNaNNaN48.04.0
DNaNNaNNaNNaN149.0115.0
ENaNNaNNaNNaN113.073.0
FNaNNaNNaNNaN140.026.0
HNaNNaNNaNNaN117.0118.0
INaNNaNNaNNaN103.091.0
JNaNNaNNaNNaN43.020.0
KNaNNaNNaNNaN93.072.0
pd.concat([df1,df3],axis = 0)


PythonC++MathEnJavaChinese
A108.059.074.053.0NaNNaN
B98.04.016.047.0NaNNaN
C71.027.077.0128.0NaNNaN
D9.017.0123.0131.0NaNNaN
E25.060.090.0132.0NaNNaN
F105.0136.0106.086.0NaNNaN
H146.0112.042.081.0NaNNaN
I83.0120.04.036.0NaNNaN
J102.028.079.08.0NaNNaN
K92.053.011.047.0NaNNaN
ANaNNaNNaNNaN61.081.0
BNaNNaNNaNNaN117.0117.0
CNaNNaNNaNNaN48.04.0
DNaNNaNNaNNaN149.0115.0
ENaNNaNNaNNaN113.073.0
FNaNNaNNaNNaN140.026.0
HNaNNaNNaNNaN117.0118.0
INaNNaNNaNNaN103.091.0
JNaNNaNNaNNaN43.020.0
KNaNNaNNaNNaN93.072.0

5.2 数据插入

df1


PythonMathEn
A1087453
B981647
C7177128
D9123131
E2590132
F10510686
H1464281
I83436
J102798
K921147
df1.insert(loc = 1, # 插入位置
           column='C++', # 插入一列,这一列名字
           value = np.random.randint(0,151,size = 10)) # 插入的值


df1


PythonC++MathEn
A108597453
B9841647
C712777128
D917123131
E256090132
F10513610686
H1461124281
I83120436
J10228798
K92531147

5.3 Join SQL风格合并

df1 = pd.DataFrame(data = {'name':['softpo','Brandon','Ella','Daniel','张三'],
                           'height':[175,180,169,177,168]}) # 身高
df2 = pd.DataFrame(data = {'name':['softpo','Brandon','Ella','Daniel','李四'],
                           'weight':[70,65,74,63,88]}) # 体重
df3 = pd.DataFrame(data = {'名字':['softpo','Brandon','Ella','Daniel','张三'],
                           'salary':np.random.randint(20,100,size = 5)}) # 薪水
display(df1,df2,df3)


nameheight
0softpo175
1Brandon180
2Ella169
3Daniel177
4张三168
nameweight
0softpo70
1Brandon65
2Ella74
3Daniel63
4李四88
名字salary
0softpo64
1Brandon48
2Ella25
3Daniel26
4张三96
pd.concat([df1,df2],axis = 1)


nameheightnameweight
0softpo175softpo70
1Brandon180Brandon65
2Ella169Ella74
3Daniel177Daniel63
4张三168李四88
# 根据共同的属性,合并数据
# df1 和 df2 共同属性:name
# 数据库,合并join 共同key
# inner内合并
pd.merge(df1,df2,how = 'inner') # 根据共同name进行合并,两表合并,外键


nameheightweight
0softpo17570
1Brandon18065
2Ella16974
3Daniel17763
pd.merge(df1,df2,how = 'outer') # 外合并,所有数据保留,不对应位置,填充了空数据


nameheightweight
0softpo175.070.0
1Brandon180.065.0
2Ella169.074.0
3Daniel177.063.0
4张三168.0NaN
5李四NaN88.0
pd.merge(df1,df2,how = 'left')


nameheightweight
0softpo17570.0
1Brandon18065.0
2Ella16974.0
3Daniel17763.0
4张三168NaN
pd.merge(df1,df3,left_on='name',right_on='名字')


nameheight名字salary
0softpo175softpo64
1Brandon180Brandon48
2Ella169Ella25
3Daniel177Daniel26
4张三168张三96
df4 = pd.DataFrame(data = np.random.randint(0,151,size = (10,3)),
                   columns=['Python','Math','En'],index = list('ABCDEFHIJK'))
df4


PythonMathEn
A71789
B14511640
C56150139
D886641
E87139117
F1414518
H93119114
I110892
J23596
K125599
score_mean = df4.mean(axis = 1).round(1)
score_mean


A     55.7
B    100.3
C    115.0
D     65.0
E    114.3
F     68.0
H    108.7
I     67.0
J     44.3
K     64.3
dtype: float64


df4.insert(loc = 2,column='平均分',value=score_mean)


df4


PythonMath平均分En
A71755.789
B145116100.340
C56150115.0139
D886665.041
E87139114.3117
F1414568.018
H93119108.7114
I1108967.02
J23544.396
K1255964.39
df5 = df4.iloc[:,[0,1,3]]
df5


PythonMathEn
A71789
B14511640
C56150139
D886641
E87139117
F1414518
H93119114
I110892
J23596
K125599
score_mean.name = '平均分'
score_mean


A     55.7
B    100.3
C    115.0
D     65.0
E    114.3
F     68.0
H    108.7
I     67.0
J     44.3
K     64.3
Name: 平均分, dtype: float64


df5


PythonMathEn
A71789
B14511640
C56150139
D886641
E87139117
F1414518
H93119114
I110892
J23596
K125599
pd.merge(df5,score_mean,
         left_index=True, # 数据合并根据行索引,对应
         right_index=True) # 右边数据根据行索引,对应


PythonMathEn平均分
A7178955.7
B14511640100.3
C56150139115.0
D88664165.0
E87139117114.3
F141451868.0
H93119114108.7
I11089267.0
J2359644.3
K12559964.3

第六部分:数据清洗

df = pd.DataFrame(data = {'color':['red','blue','red','green','green','blue',None,np.NaN,'green'],
                          'price':[20,15,20,18,18,22,30,30,22]})
df


colorprice
0red20
1blue15
2red20
3green18
4green18
5blue22
6None30
7NaN30
8green22
# 重复数据删除
df.drop_duplicates() # 非重复数据,索引7和索引6重复数据,None和NaN一回事


colorprice
0red20
1blue15
3green18
5blue22
6None30
8green22
df


colorprice
0red20
1blue15
2red20
3green18
4green18
5blue22
6None30
7NaN30
8green22
df.dropna() # 空数据过滤


colorprice
0red20
1blue15
2red20
3green18
4green18
5blue22
8green22
# 删除行,或者列
df.drop(labels=[2,4,6,8]) # 默认情况下删除行


colorprice
0red20
1blue15
3green18
5blue22
7NaN30
# 删除指定的列
df.drop(labels='color',axis = 1) # 删除列,axis = 1


price
020
115
220
318
418
522
630
730
822
df.filter(items=['price']) # 参数意思,保留数据price


price
020
115
220
318
418
522
630
730
822
df['size'] = 1024 # 广播
df


colorpricesize
0red201024
1blue151024
2red201024
3green181024
4green181024
5blue221024
6None301024
7NaN301024
8green221024
df.filter(like = 'i') # 模糊匹配,保留了带有i这个字母的索引


pricesize
0201024
1151024
2201024
3181024
4181024
5221024
6301024
7301024
8221024
df['hello'] = 512
df


colorpricesizehello
0red201024512
1blue151024512
2red201024512
3green181024512
4green181024512
5blue221024512
6None301024512
7NaN301024512
8green221024512
# 正则表达式,方式很多
df.filter(regex = 'e$') # 正则表达式,正则表达式,限制e必须在最后


pricesize
0201024
1151024
2201024
3181024
4181024
5221024
6301024
7301024
8221024
df.filter(regex='e') # 只要带有e全部选出来


pricesizehello
0201024512
1151024512
2201024512
3181024512
4181024512
5221024512
6301024512
7301024512
8221024512
# 异常值过滤
a = np.random.randint(0,1000,size = 200)
a


array([647, 871,  35, 738, 789, 587, 413, 559, 648, 993, 579, 129, 825,
       904, 356, 316, 997, 800,  35, 601,   1, 208, 465, 614, 680, 619,
       922, 346, 994, 135,   5, 650, 165, 475,  95, 194, 225, 455, 634,
       717, 836, 678, 156, 203, 263, 180, 143, 248, 407,  56, 202, 947,
        46, 408, 686, 530, 545, 273, 125, 964, 323, 775, 313, 238, 242,
       804, 228, 322, 322, 768, 556,   9, 629, 938, 932, 859, 955, 707,
       729, 541, 280, 493, 255, 681, 428, 992, 420, 650, 267,  32, 662,
       185, 756, 319, 313, 271, 229, 711, 803,  85, 527, 853, 670, 685,
       423, 458, 628, 701, 253, 495, 548, 879, 503, 115,  90, 978, 665,
       532, 198, 482, 412, 850, 879, 913,  96, 177, 778, 337, 502, 128,
        49, 747, 591,  22, 557, 105, 136, 775, 626, 515, 959, 869, 245,
       437,  51, 236, 438, 489, 854,  49, 163, 687, 488, 175, 428, 517,
       493, 377, 100, 728, 717, 926, 689, 186, 777, 639,  79,  83, 620,
       623, 931, 918, 721, 315, 133, 423, 161, 999, 341,  55, 837, 582,
       530, 805,  22, 301, 177, 322, 708,  14,  50, 864, 889, 929, 967,
       497, 624, 127, 539,  14])


# 异常值,大于800,小于 100算作异常,认为定义的。根据实际情况。
cond = (a <=800) & (a >=100)
a[cond]


array([647, 738, 789, 587, 413, 559, 648, 579, 129, 356, 316, 800, 601,
       208, 465, 614, 680, 619, 346, 135, 650, 165, 475, 194, 225, 455,
       634, 717, 678, 156, 203, 263, 180, 143, 248, 407, 202, 408, 686,
       530, 545, 273, 125, 323, 775, 313, 238, 242, 228, 322, 322, 768,
       556, 629, 707, 729, 541, 280, 493, 255, 681, 428, 420, 650, 267,
       662, 185, 756, 319, 313, 271, 229, 711, 527, 670, 685, 423, 458,
       628, 701, 253, 495, 548, 503, 115, 665, 532, 198, 482, 412, 177,
       778, 337, 502, 128, 747, 591, 557, 105, 136, 775, 626, 515, 245,
       437, 236, 438, 489, 163, 687, 488, 175, 428, 517, 493, 377, 100,
       728, 717, 689, 186, 777, 639, 620, 623, 721, 315, 133, 423, 161,
       341, 582, 530, 301, 177, 322, 708, 497, 624, 127, 539])


# 正态分布,平均值是0,标准差是1
b = np.random.randn(100000)
b


array([-1.17335196,  2.02215212, -0.29891071, ..., -1.6762474 ,
       -1.27071523, -1.15187761])


# 过滤异常值 
cond = np.abs(b) > 3*1 # 这些异常值,找到了
b[cond]


array([ 3.46554243,  3.08127362,  3.55119821,  3.62774922,  3.11823028,
        3.22620922, -3.10381164, -3.20067563, -3.04607325, -3.04427703,
        3.09111414, -3.28220862,  3.00499105, -3.06179762, -3.17331972,
       -3.37172359,  3.93766782, -3.22895232, -3.13737479,  3.07612751,
       -3.43215209, -3.27660651, -3.35116041,  4.74328695,  3.25586636,
       -3.54090785,  3.08881127,  3.00635551,  3.5018534 , -3.14463788,
       -3.0182886 , -3.12145648, -3.24276219,  3.08087834,  3.04820238,
       -3.24173442, -3.14648209,  3.87748281, -3.07660111, -3.16083928,
        3.32641202, -3.05228179,  3.04924043,  3.02825131, -3.08360056,
       -3.04890894, -3.27258041, -3.07339115, -3.38375287, -3.14267022,
       -3.7207377 ,  3.4813841 , -3.12866105, -3.17122631,  3.0599701 ,
        3.12393087,  3.20253178, -3.05221958, -3.35532417,  3.02450167,
       -3.28385568,  3.3422833 , -3.11052755, -3.09647003,  3.32353664,
       -3.70215812, -3.07916575, -3.13546874,  3.20575826, -3.67982084,
       -3.17055893,  3.4836615 , -3.30039879, -3.27774497,  3.02125912,
        3.12332885,  3.01456477,  3.15958151, -3.34101369,  3.32444673,
        3.06479889,  3.14506863,  3.15670827,  3.15066995,  3.14705869,
       -3.20526898, -3.0761338 ,  3.20716127, -3.20941307, -3.7212859 ,
       -3.51785834, -3.06096986, -3.05425748, -3.47049261,  3.22285172,
       -3.32233224, -3.04630606,  3.41215312, -3.16482337, -3.01813609,
       -3.05441573, -3.10394416,  3.03469642,  3.01493847, -3.11901071,
        3.5996865 ,  3.48194227, -3.77734847,  3.04588004,  3.10611158,
       -3.20473003, -3.4377999 ,  3.22680244, -3.1536921 , -3.22798726,
        3.34569796,  3.06046948, -3.16955677,  3.12613756,  3.04286964,
        3.01148054,  3.18525226, -4.08971624, -3.55427596, -5.39879049,
        3.05203254,  3.08944491, -3.02258209,  3.17316913, -3.1615401 ,
        3.17205118, -3.24221772, -3.14421237, -3.74675036,  3.61678522,
        3.59097443, -3.0302881 ,  3.23236707, -3.00850012,  3.33608986,
       -3.02859152, -3.7000766 , -3.10992575, -3.00412636, -3.05657102,
       -3.05208781,  3.14017797,  3.46457731,  3.15619413, -3.43236114,
        3.08259529, -3.84578168,  3.04203424, -3.29444028, -3.01764756,
        3.11300256,  3.23071233,  3.20785451, -3.15668756,  3.44176099,
       -3.19985577, -3.14126853, -3.26482841, -3.62208271, -3.55305069,
        3.09639491, -3.18178713, -3.03662021,  3.17247227,  3.3908074 ,
       -3.63563705, -3.56417097,  3.02823554, -3.06955375,  3.74305364,
        3.63993306, -3.14193492, -3.04032527, -3.28310908, -3.37949723,
       -3.25915912, -3.01206123, -3.10871377, -3.22982732,  3.8136103 ,
        3.48893313,  3.9918267 ,  3.4526763 , -3.46595488, -3.29996013,
       -3.42965097,  3.151502  ,  3.10548689, -3.44707735,  3.21881565,
        3.50932999, -3.12410382,  3.30296386,  3.02454576, -3.20072608,
        3.54339754, -3.17847739, -3.21475045,  3.03546088, -3.06225619,
        3.48158164,  3.15243123, -3.06358376,  3.27300242,  3.32577453,
        3.23535167, -3.04681725,  3.33439387,  3.10620079,  3.52883469,
       -3.1790272 ,  3.02641222, -3.45636819,  3.21009424,  3.08045954,
       -3.59721754,  3.24693695,  3.05920919, -3.43674159, -3.00370946,
       -3.48031594, -3.28748467,  3.42581649,  3.46912521, -3.28384157,
        3.76358974, -3.34035865,  3.12978233,  3.44856854, -3.04074246,
        3.50018071,  3.33188267, -3.09775514, -3.49356906, -3.09902374,
        3.12068562, -3.1776565 , -3.44282129,  3.19286374, -3.28304596,
       -3.10080963, -3.37189709,  3.77743156,  3.03547536,  3.22045459,
       -3.44007263,  3.01331408,  3.49733677,  3.28831922,  3.62147013,
        3.03458981,  3.15447237, -3.33931478,  3.09858431, -3.23592306,
        3.3144797 ,  3.37067342, -3.18749118,  3.09319307, -3.34390567,
        3.29819563,  3.3120354 ,  3.04166958, -3.00975323,  3.0347423 ,
       -3.82502331, -3.13125028, -3.0876424 ,  3.13929221,  3.570775  ,
       -3.37420738,  3.17527797,  3.13396148, -3.70088631, -3.04054948,
        3.05399103,  3.24908851,  3.19666266, -3.64071456, -3.85271081,
        3.06864652,  3.53367592,  3.54650649,  3.6355438 ,  3.657715  ,
        4.03831601,  3.61651925])


第七部分:数据转换

7.1 轴和元素转换

import numpy as np
import pandas as pd


df = pd.DataFrame(data = np.random.randint(0,10,size = (10,3)),
                  columns=['Python','Tensorflow','Keras'],
                  index = list('ABCDEFHIJK'))
df


PythonTensorflowKeras
A253
B500
C704
D047
E869
F826
H678
I769
J479
K671
df.rename(index = {'A':'X','K':'Y'}, # 行索引
          columns={'Python':'人工智能'}, # 列索引修改
          inplace=True) # 替换原数据


df.replace(5,50,inplace=True)
df


人工智能TensorflowKeras
X2503
B5000
C704
D047
E869
F826
H678
I769
J479
Y671
df.replace([2,7],1024,inplace=True)
df


人工智能TensorflowKeras
X1024503
B5000
C102404
D041024
E869
F810246
H610248
I102469
J410249
Y610241
df.iloc[4,2] = np.NaN # 空数据


df.replace({0:2048,np.nan:-100},inplace=True)
df


人工智能TensorflowKeras
X1024503.0
B5020482048.0
C102420484.0
D204841024.0
E86-100.0
F810246.0
H610248.0
I102469.0
J410249.0
Y610241.0
df.replace({'Tensorflow':1024},-1024) # 指定某一列,进行数据替换


人工智能TensorflowKeras
X1024503.0
B5020482048.0
C102420484.0
D204841024.0
E86-100.0
F8-10246.0
H6-10248.0
I102469.0
J4-10249.0
Y6-10241.0

7.2 map映射元素转变

# map 只能针对一列,就是Series
# 有一些没有对应,那么返回就是空数据
df['人工智能'].map({1024:3.14,2048:2.718,6:1108}) # 跟据字典对数据进行改变


X       3.140
B         NaN
C       3.140
D       2.718
E         NaN
F         NaN
H    1108.000
I       3.140
J         NaN
Y    1108.000
Name: 人工智能, dtype: float64


df['Keras'].map(lambda x :True if x > 0 else False) # 如果大于 0 返回True,不然返回False


X     True
B     True
C     True
D     True
E    False
F     True
H     True
I     True
J     True
Y     True
Name: Keras, dtype: bool


def convert(x):
    if x >= 1024:
        return True
    else:
        return False
df['level'] = df['Tensorflow'].map(convert) # map映射,映射是Tensorflow中这一列中每一个数据,传递到方法中
df


人工智能TensorflowKeraslevel
X1024503.0False
B5020482048.0True
C102420484.0True
D204841024.0False
E86-100.0False
F810246.0True
H610248.0True
I102469.0False
J410249.0True
Y610241.0True

7.3 apply映射元素转变

# 既可以操作Series又可以操作DataFrame
df['人工智能'].apply(lambda x : x + 100)


X    1124
B     150
C    1124
D    2148
E     108
F     108
H     106
I    1124
J     104
Y     106
Name: 人工智能, dtype: int64


df['level'].apply(lambda x:1 if x else 0)


X    0
B    1
C    1
D    0
E    0
F    1
H    1
I    0
J    1
Y    1
Name: level, dtype: int64


df.apply(lambda x : x + 1000) # apply对 所有的数据进行映射


人工智能TensorflowKeraslevel
X202410501003.01000
B105030483048.01001
C202430481004.01001
D304810042024.01000
E10081006900.01000
F100820241006.01001
H100620241008.01001
I202410061009.01000
J100420241009.01001
Y100620241001.01001
def convert(x):
    return (x.median(),x.count(),x.min(),x.max(),x.std()) # 返回中位数,返回的是计数
df.apply(convert).round(1) # 默认操作列数据


人工智能TensorflowKeraslevel
029.01024.07.01
110.010.010.010
24.04.0-100.0False
32048.02048.02048.0True
4717.8800.4694.90.516398
df


人工智能TensorflowKeraslevel
X1024503.0False
B5020482048.0True
C102420484.0True
D204841024.0False
E86-100.0False
F810246.0True
H610248.0True
I102469.0False
J410249.0True
Y610241.0True
df.apply(convert,axis = 1) # axis = 1,操作数据就是行数据


X     (26.5, 4, False, 1024, 503.68732033541073)
B    (1049.0, 4, True, 2048, 1167.8622564326668)
C      (514.0, 4, True, 2048, 979.1007353689405)
D     (514.0, 4, False, 2048, 979.3623776042588)
E        (3.0, 4, -100.0, 8, 52.443620520834884)
F        (7.0, 4, True, 1024, 509.5085049993441)
H        (7.0, 4, True, 1024, 509.5085049993441)
I         (7.5, 4, False, 1024, 509.51373877453)
J        (6.5, 4, True, 1024, 509.6773489179208)
Y         (3.5, 4, 1.0, 1024, 510.6721061503164)
dtype: object


7.4 transform元素转变

df = pd.DataFrame(np.random.randint(0,10,size = (10,3)),
                  columns=['Python','Tensorflow','Keras'],
                  index = list('ABCDEFHIJK'))
display(df)
# 可以针对一列数据,Series进行运算
df['Python'].transform(lambda x : 1024 if x > 5 else -1024) # 这个功能和map,apply类似的


PythonTensorflowKeras
A119
B691
C146
D951
E418
F257
H723
I789
J542
K707
A   -1024
B    1024
C   -1024
D    1024
E   -1024
F   -1024
H    1024
I    1024
J   -1024
K    1024
Name: Python, dtype: int64


df['Tensorflow'].apply([np.sqrt,np.square,np.cumsum]) # 针对一列,进行不同的操作


sqrtsquarecumsum
A1.00000011
B3.0000008110
C2.0000001614
D2.2360682519
E1.000000120
F2.2360682525
H1.414214427
I2.8284276435
J2.0000001639
K0.000000039
df['Tensorflow'].transform([np.sqrt,np.square,np.cumsum]) # 针对一列,进行不同的操作


sqrtsquarecumsum
A1.00000011
B3.0000008110
C2.0000001614
D2.2360682519
E1.000000120
F2.2360682525
H1.414214427
I2.8284276435
J2.0000001639
K0.000000039
def convert(x):
    if x > 5:
        return True
    else:
        return False
# 可以针对DataFrame进行运算
df.transform({'Python':np.cumsum,'Tensorflow':np.square,'Keras':convert}) # 对不同的列,执行不同的操作


PythonTensorflowKeras
A11True
B781False
C816True
D1725False
E211True
F2325True
H304False
I3764True
J4216False
K490True
df.apply({'Python':np.cumsum,'Tensorflow':np.square,'Keras':convert}) # 对不同的列,执行不同的操作


PythonTensorflowKeras
A11True
B781False
C816True
D1725False
E211True
F2325True
H304False
I3764True
J4216False
K490True

7.5 重排随机抽样哑变量

df


PythonTensorflowKeras
A119
B691
C146
D951
E418
F257
H723
I789
J542
K707
index = np.random.permutation(10) # 返回打乱顺讯的索引
index


array([3, 4, 1, 2, 7, 9, 0, 8, 5, 6])


# 重排,索引打乱
df.take(index)


PythonTensorflowKeras
D951
E418
B691
C146
I789
K707
A119
J542
F257
H723
# 从大量数据中随机抽取数据
df.take(np.random.randint(0,10,size = 20)) # 随机抽样20个数据


PythonTensorflowKeras
J542
J542
D951
K707
H723
I789
J542
A119
C146
J542
I789
D951
I789
K707
A119
B691
H723
D951
B691
H723
df2 = pd.DataFrame(data = {'key':['a','b','a','b','c','b','c']})
df2


key
0a
1b
2a
3b
4c
5b
6c
# one-hot,哑变量
# str类型数据,经过哑变量变换可以使用数字表示
pd.get_dummies(df2,prefix='',prefix_sep='') # 1表示,有;0表示,没有


abc
0100
1010
2100
3010
4001
5010
6001

第八部分:数据重塑

df


PythonTensorflowKeras
A119
B691
C146
D951
E418
F257
H723
I789
J542
K707
df.T # 转置,行变列,列变行


ABCDEFHIJK
Python1619427757
Tensorflow1945152840
Keras9161873927
df2 = pd.DataFrame(np.random.randint(0,10,size = (20,3)),
                   columns=['Python','Math','En'],
                   index = pd.MultiIndex.from_product([list('ABCDEFHIJK'),['期中','期末']])) # 多层索引

df2


PythonMathEn
A期中330
期末658
B期中559
期末752
C期中079
期末975
D期中565
期末796
E期中739
期末914
F期中995
期末089
H期中700
期末166
I期中818
期末799
J期中508
期末366
K期中822
期末352
df2.unstack(level = 1) # 将行索引变成列索引,-1表示最后一层


PythonMathEn
期中期末期中
A363
B575
C097
D576
E793
F909
H710
I871
J530
K832
df2.unstack(level = -1) # 将行索引变成列索引,-1表示最后一层


PythonMathEn
期中期末期中
A363
B575
C097
D576
E793
F909
H710
I871
J530
K832
df2.stack() # 列变成行了


A  期中  Python    3
       Math      3
       En        0
   期末  Python    6
       Math      5
       En        8
B  期中  Python    5
       Math      5
       En        9
   期末  Python    7
       Math      5
       En        2
C  期中  Python    0
       Math      7
       En        9
   期末  Python    9
       Math      7
       En        5
D  期中  Python    5
       Math      6
       En        5
   期末  Python    7
       Math      9
       En        6
E  期中  Python    7
       Math      3
       En        9
   期末  Python    9
       Math      1
       En        4
F  期中  Python    9
       Math      9
       En        5
   期末  Python    0
       Math      8
       En        9
H  期中  Python    7
       Math      0
       En        0
   期末  Python    1
       Math      6
       En        6
I  期中  Python    8
       Math      1
       En        8
   期末  Python    7
       Math      9
       En        9
J  期中  Python    5
       Math      0
       En        8
   期末  Python    3
       Math      6
       En        6
K  期中  Python    8
       Math      2
       En        2
   期末  Python    3
       Math      5
       En        2
dtype: int64


df2.unstack().stack(level = 0)


期中期末
AEn08
Math35
Python36
BEn92
Math55
Python57
CEn95
Math77
Python09
DEn56
Math69
Python57
EEn94
Math31
Python79
FEn59
Math98
Python90
HEn06
Math06
Python71
IEn89
Math19
Python87
JEn86
Math06
Python53
KEn22
Math25
Python83
df2.mean() # 计算的是 列


Python    5.45
Math      4.85
En        5.60
dtype: float64


df2.mean(axis = 1)


A  期中    2.000000
   期末    6.333333
B  期中    6.333333
   期末    4.666667
C  期中    5.333333
   期末    7.000000
D  期中    5.333333
   期末    7.333333
E  期中    6.333333
   期末    4.666667
F  期中    7.666667
   期末    5.666667
H  期中    2.333333
   期末    4.333333
I  期中    5.666667
   期末    8.333333
J  期中    4.333333
   期末    5.000000
K  期中    4.000000
   期末    3.333333
dtype: float64


df2.mean(level=1) # 计算期中期末所有学生的平均分


PythonMathEn
期中5.73.65.5
期末5.26.15.7
df2.mean(level = 0) # 计算每位学生期中和期末平均分


PythonMathEn
A4.54.04.0
B6.05.05.5
C4.57.07.0
D6.07.55.5
E8.02.06.5
F4.58.57.0
H4.03.03.0
I7.55.08.5
J4.03.07.0
K5.53.52.0

第九部分:数学和统计方法

9.1 简单统计指标

df = pd.DataFrame(np.random.randint(0,10,size = (20,3)),
                  columns=['Python','Math','En'],index = list('QWERTYUIOPASDFGHJKLZ'))
df


PythonMathEn
Q143
W820
E309
R989
T913
Y531
U580
I183
O035
P661
A040
S394
D528
F292
G198
H952
J575
K265
L273
Z298
df.iloc[6,2] = np.NAN
display(df)


PythonMathEn
Q143.0
W820.0
E309.0
R989.0
T913.0
Y531.0
U58NaN
I183.0
O035.0
P661.0
A040.0
S394.0
D528.0
F292.0
G198.0
H952.0
J575.0
K265.0
L273.0
Z298.0
df.count() # 统计非空数据数量


Python    20
Math      20
En        19
dtype: int64


display(df.mean(),df.median()) # 平均值,中位数


Python    3.900000
Math      5.500000
En        4.157895
dtype: float64



Python    3.0
Math      6.0
En        3.0
dtype: float64


display(df.min(),df.max()) # 最小值,最大值


Python    0.0
Math      0.0
En        0.0
dtype: float64



Python    9.0
Math      9.0
En        9.0
dtype: float64


df['Python'].unique() # 去除重复数据


array([1, 8, 3, 9, 5, 0, 6, 2])


df['Math'].value_counts() # 统计出现的频次


9    4
8    3
7    2
6    2
4    2
3    2
2    2
5    1
1    1
0    1
Name: Math, dtype: int64


df.quantile(q = [0,0.25,0.5,0.75,1]) # 百分位数


PythonMathEn
0.000.000.00.0
0.251.753.02.0
0.503.006.03.0
0.755.258.06.5
1.009.009.09.0
df.describe().round(1)


PythonMathEn
count20.020.019.0
mean3.95.54.2
std3.02.93.0
min0.00.00.0
25%1.83.02.0
50%3.06.03.0
75%5.28.06.5
max9.09.09.0

9.2 索引标签、位置获取

df['Python'].argmax() # 返回最大值索引


3


df['En'].argmin() # 最小值索引


1


df.idxmax() # 返回最大值的标签


Python    R
Math      S
En        E
dtype: object


df.idxmin() # 返回最小值标签


Python    O
Math      E
En        W
dtype: object


9.3 更多统计指标

df.cumsum() # 累加和


PythonMathEn
Q143.0
W963.0
E12612.0
R211421.0
T301524.0
Y351825.0
U4026NaN
I413428.0
O413733.0
P474334.0
A474734.0
S505638.0
D555846.0
F576748.0
G587656.0
H678158.0
J728863.0
K749468.0
L7610171.0
Z7811079.0
df.cumprod() # 累乘和


PythonMathEn
Q143.0
W880.0
E2400.0
R21600.0
T194400.0
Y972000.0
U486000NaN
I4860000.0
O000.0
P000.0
A000.0
S000.0
D000.0
F000.0
G000.0
H000.0
J000.0
K000.0
L000.0
Z000.0
df.cummin() # 累计最小值


PythonMathEn
Q143.0
W120.0
E100.0
R100.0
T100.0
Y100.0
U10NaN
I100.0
O000.0
P000.0
A000.0
S000.0
D000.0
F000.0
G000.0
H000.0
J000.0
K000.0
L000.0
Z000.0
df.cummax() # 累计最大值


PythonMathEn
Q143.0
W843.0
E849.0
R989.0
T989.0
Y989.0
U98NaN
I989.0
O989.0
P989.0
A989.0
S999.0
D999.0
F999.0
G999.0
H999.0
J999.0
K999.0
L999.0
Z999.0
df.std() # 标准差


Python    3.041814
Math      2.946898
En        3.004869
dtype: float64


df.var()


Python    9.252632
Math      8.684211
En        9.029240
dtype: float64


df.diff() # 差分,当前数据减去上一个的差值


PythonMathEn
QNaNNaNNaN
W7.0-2.0-3.0
E-5.0-2.09.0
R6.08.00.0
T0.0-7.0-6.0
Y-4.02.0-2.0
U0.05.0NaN
I-4.00.0NaN
O-1.0-5.02.0
P6.03.0-4.0
A-6.0-2.0-1.0
S3.05.04.0
D2.0-7.04.0
F-3.07.0-6.0
G-1.00.06.0
H8.0-4.0-6.0
J-4.02.03.0
K-3.0-1.00.0
L0.01.0-2.0
Z0.02.05.0
df.pct_change().round(3) # 计算百分比变化


PythonMathEn
QNaNNaNNaN
W7.000-0.500-1.000
E-0.625-1.000inf
R2.000inf0.000
T0.000-0.875-0.667
Y-0.4442.000-0.667
U0.0001.6670.000
I-0.8000.0002.000
O-1.000-0.6250.667
Pinf1.000-0.800
A-1.000-0.333-1.000
Sinf1.250inf
D0.667-0.7781.000
F-0.6003.500-0.750
G-0.5000.0003.000
H8.000-0.444-0.750
J-0.4440.4001.500
K-0.600-0.1430.000
L0.0000.167-0.400
Z0.0000.2861.667

9.4 高级统计指标

df.cov() # 协方差:自己和别人计算


PythonMathEn
Python9.252632-2.157895-0.695906
Math-2.1578958.6842111.160819
En-0.6959061.1608199.029240
df.var() # 方差: 自己和自己计算


Python    9.252632
Math      8.684211
En        9.029240
dtype: float64


df['Python'].cov(df['Math'])


-2.157894736842105


df.corr() # 相关性系数 -1 ~ 1


PythonMathEn
Python1.000000-0.240731-0.074376
Math-0.2407311.0000000.130217
En-0.0743760.1302171.000000
df.corrwith(df['En']) # 一列的相关性系数


Python   -0.074376
Math      0.130217
En        1.000000
dtype: float64


第十部分:排序

df = pd.DataFrame(np.random.randint(0,20,size = (20,3)),
                  columns=['Python','Tensorflow','Keras'],index = list('QWERTYUIOPASDFGHJKLZ'))
df


PythonTensorflowKeras
Q1734
W13187
E12110
R3514
T11157
Y5154
U1827
I736
O1185
P1260
A4184
S1558
D81114
F3217
G4178
H1214
J126
K17916
L11144
Z16134
df.sort_index(axis = 0,ascending=False) # 降序


PythonTensorflowKeras
Z16134
Y5154
W13187
U1827
T11157
S1558
R3514
Q1734
P1260
O1185
L11144
K17916
J126
I736
H1214
G4178
F3217
E12110
D81114
A4184
df.sort_index(ascending=True) # 升序


PythonTensorflowKeras
A4184
D81114
E12110
F3217
G4178
H1214
I736
J126
K17916
L11144
O1185
P1260
Q1734
R3514
S1558
T11157
U1827
W13187
Y5154
Z16134
df.sort_values(by = 'Python',ascending=True) # 根据Python属性进行升序排列


PythonTensorflowKeras
J126
O1185
R3514
F3217
A4184
G4178
Y5154
I736
D81114
T11157
L11144

最后

Python崛起并且风靡,因为优点多、应用领域广、被大牛们认可。学习 Python 门槛很低,但它的晋级路线很多,通过它你能进入机器学习、数据挖掘、大数据,CS等更加高级的领域。Python可以做网络应用,可以做科学计算,数据分析,可以做网络爬虫,可以做机器学习、自然语言处理、可以写游戏、可以做桌面应用…Python可以做的很多,你需要学好基础,再选择明确的方向。这里给大家分享一份全套的 Python 学习资料,给那些想学习 Python 的小伙伴们一点帮助!

👉Python所有方向的学习路线👈

Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。

👉Python必备开发工具👈

工欲善其事必先利其器。学习Python常用的开发软件都在这里了,给大家节省了很多时间。

👉Python全套学习视频👈

我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了。

👉实战案例👈

学python就与学数学一样,是不能只看书不做题的,直接看步骤和答案会让人误以为自己全都掌握了,但是碰到生题的时候还是会一筹莫展。

因此在学习python的过程中一定要记得多动手写代码,教程只需要看一两遍即可。

👉大厂面试真题👈

我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。

了解详情:docs.qq.com/doc/DSnl3ZG…