数据分析从业者必看,10 个加速Python数据分析的简单的小技巧

88 阅读8分钟

pandas 有一个内置的.plot()函数作为数据帧类的一部分。然而,用这个函数呈现的可视化并不是交互式的,这使得它不那么吸引人。相反,也不能排除使用 pandas.dataframe.plot()函数绘制图表的易用性。如果我们不需要对代码进行重大修改,就可以像绘制 pandas plots 那样绘出交互式图表呢?你可以在 Cufflinks 库的帮助下做到这一点。

Cufflinks 将 plotly 的力量与 pandas 的灵活性结合起来,便于绘制。现在让我们来看看如何安装这个库并让它在 pandas 中工作。

安装

复制

pip install plotly # Plotly is a pre-requisite before installing cufflinks 
pip install cufflinks 
1.2.

使用

复制

#importing Pandas 
import pandas as pd 
#importing plotly and cufflinks in offline mode 
import cufflinks as cf 
 
 
import plotly.offline 
cf.go_offline() 
cf.set_config_file(offline=False, world_readable=True) 
1.2.3.4.5.6.7.8.9.

是时候用 Titanic 数据集来展示它的魔法了。

  • df.iplot()

[数据分析从业者必看,10 个加速 python 数据分析的简单的小技巧

df.iplot() vs df.plot()

右视图显示的是静态图表,左图表是交互式的,更详细地说,所有这一切在语法上都没有重大变化。

点击这里获取更多的示例。

3.一点点 Magic

Magic 命令是 Jupyter notebook 中的一组方便的函数,旨在解决标准数据分析中的一些常见问题。在%lsmagic 的帮助下,您可以看到所有可用的 magic。

[数据分析从业者必看,10 个加速 python 数据分析的简单的小技巧

所有可用的 magic 函数列表

magic 命令有两种:行 magics(前缀为一个% 字符并在一行输入上操作)和单元 magics(用%% 前缀关联并在多行输入上操作)。如果设置为 1,则可以调用 magic 函数,而无需键入初始百分比。

让我们看看其中一些在常见数据分析任务中可能有用的功能:

% pastebin

%Pastebin 将代码上载到 Pastebin 并返回 URL。Pastebin 是一种在线内容托管服务,我们可以在其中存储纯文本(如源代码片段),然后可以与其他人共享 URL。事实上,Github gist 也类似于 Pastebin,尽管有版本控制。

考虑使用包含以下内容的 python script file.py:

复制

#file.py 
def foo(x): 
 return x 
1.2.3.

使用 Jupyter notebook 中的%pastebin 生成 pastebin url

数据分析从业者必看,10 个加速 python 数据分析的简单的小技巧

%matplotlib notebook

%matplotlib inline 函数用于呈现 Jupyter noteboo 中的静态 matplotlib 绘图。尝试用 notebook 替换内嵌部件,以轻松获得可缩放和可调整大小的绘图。确保在导入 Matplotlib 库之前调用了函数。

数据分析从业者必看,10 个加速 python 数据分析的简单的小技巧

%matplotlib inline vs %matplotlib notebook

%run

%run 函数在 notebook 内运行 python 脚本。

  • %run file.py

%%writefile

%WriteFile 将单元格的内容写入文件。在这里,代码将被写入一个名为 foo 的文件,并保存在当前目录中。

[数据分析从业者必看,10 个加速 python 数据分析的简单的小技巧

%%latex

%%latex 函数将单元格内容呈现为 LaTeX。它可用于在单元中编写数学公式和方程。

数据分析从业者必看,10 个加速 python 数据分析的简单的小技巧

4.发现和消除错误

interactive debugger 也是一个神奇的函数,但我已经为它提供了自己的一个类别。如果在运行代码单元时遇到异常,请在新行中键入%debug 并运行它。这将打开一个交互式调试环境,将您带到发生异常的位置。您还可以检查程序中分配的变量值,并在此处执行操作。要退出调试器,请单击 q。

[数据分析从业者必看,10 个加速 python 数据分析的简单的小技巧

5.输出也可以很漂亮

如果您想为数据结构生成美观的表示,pprint 是你想要的模块,它在打印字典或 JSON 数据时特别有用。让我们来看一个使用 print 和 pprint 显示输出的示例。

[数据分析从业者必看,10 个加速 python 数据分析的简单的小技巧

数据分析从业者必看,10 个加速 python 数据分析的简单的小技巧

6.突出报警框

我们可以在您的 Jupyter 笔记本中使用警告/注释框来突出显示重要的内容或任何需要突出显示的内容。注释的颜色取决于警报的类型。只需在需要突出显示的单元格中添加以下代码。

蓝色警报框:信息提示

复制

<div class="alert alert-block alert-info"> 
<b>Tip:</b> Use blue boxes (alert-info) for tips and notes. 
If it』s a note, you don』t have to include the word「Note」. 
</div> 
1.2.3.4.

黄色警报框:警告

复制

<div class="alert alert-block alert-warning"> 
<b>Example:</b> Yellow Boxes are generally used to include additional examples or mathematical formulas. 
</div> 
1.2.3.

绿色警报框:成功

复制

<div class="alert alert-block alert-success"> 
Use green box only when necessary like to display links to related content. 
</div> 
1.2.3.

红色警报框:危险

复制

<div class="alert alert-block alert-danger"> 
It is good to avoid red boxes but can be used to alert users to not delete some important part of code etc. 
</div> 
1.2.3.

7.打印单元格的所有输出

考虑一个包含以下代码行的 Jupyter notebook 单元:

  • In [1]: 10+5
  • 11+6
  • Out [1]: 17

通常情况下,单元格中只有最后一个输出会被打印出来,对于其他输出,我们需要添加 print()函数。好吧,其实我们只需在 notebook 顶部添加以下代码片段就可以打印所有输出。

复制

from IPython.core.interactiveshell import InteractiveShell InteractiveShell.ast_node_interactivity = "all" 
1.

现在所有的输出都被一个接一个地打印出来

  • In [1]: 10+5
  • 11+6
  • 12+7
  • Out [1]: 15
  • Out [1]: 17
  • Out [1]: 19

要恢复到原始设置:

复制

InteractiveShell.ast_node_interactivity = "last_expr" 
1.

8.使用「i」文件运行 python 脚本

从命令行运行 python 脚本的一种典型方法是:python hello.py。但是,如果您在运行同一脚本(如 python)时添加了一个额外的-i hello.py,那么它提供了更多的优势。让我们看看怎么做。

首先,只要程序不结束,python 就不会退出解释器。因此,我们可以检查变量的值以及程序中定义的函数的正确性。

其次,我们可以通过以下方式轻松调用 Python 调试器,因为我们仍在解释器中:

复制

import pdb  
pdb.pm() 
1.2.

这将使我们进入异常发生的位置,然后我们可以处理代码。

[数据分析从业者必看,10 个加速 python 数据分析的简单的小技巧

查看来源可以点击这里。

9.自动注释代码

ctrl/cmd+/自动将单元格中选定的行注释掉,再次点击组合将取消对同一行代码的注释。

[数据分析从业者必看,10 个加速 python 数据分析的简单的小技巧

10.删除容易恢复难

你有没有不小心删除了 Jupyter notebook 上的一个单元的经历?如果有,那么这里有一个快捷方式可以撤消删除操作。

如果删除了单元格的内容,则可以通过按 ctrl/cmd+z 轻松恢复该内容。

如果需要恢复整个已删除单元格,请按 Esc+Z 或 EDIT > Undo 撤销删除单元格。

[数据分析从业者必看,10 个加速 python 数据分析的简单的小技巧

结论

在本文中,我列出了在使用 Python 和 Jupyter notebook 时收集到的主要技巧。我相信它们会对你有用,你会从这篇文章中收回一些东西。好了,开始快乐的编码之旅吧!.

关于Python技术储备

学好 Python 不论是就业还是做副业赚钱都不错,但要学会 Python 还是要有一个学习规划。最后大家分享一份全套的 Python 学习资料,给那些想学习 Python 的小伙伴们一点帮助!

点此免费领取:CSDN大礼包:《python学习路线&全套学习资料》免费分享

一、Python所有方向的学习路线

(1)Python所有方向的学习路线(新版)

这是我花了几天的时间去把Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。

最近我才对这些路线做了一下新的更新,知识体系更全面了。

在这里插入图片描述

(2)Python学习视频

包含了Python入门、爬虫、数据分析和web开发的学习视频,总共100多个,虽然没有那么全面,但是对于入门来说是没问题的,学完这些之后,你可以按照我上面的学习路线去网上找其他的知识资源进行进阶。

在这里插入图片描述

(3)100多个练手项目

我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了,只是里面的项目比较多,水平也是参差不齐,大家可以挑自己能做的项目去练练。

在这里插入图片描述

了解详情:docs.qq.com/doc/DSnl3ZG…