+ - [评价总体情况分析](#_42)
- * [本人浅薄分析](#_45)
- [各游客人群占比分析](#_53)
- * [本人浅薄分析](#_56)
- [各评分雷达图](#_61)
- * [本人浅薄分析](#_64)
- [差评词云-可视化](#_68)
- * [本人浅薄分析](#_74)
- [好评词云-可视化](#_76)
- * [本人浅薄分析](#_78)
+ [综合分析](#_82)
+ [写在最后](#_92)
今年冬天,哈尔滨冰雪旅游"杀疯了",在元旦假期更是被南方游客"包场"。据哈尔滨市文化广电和旅游局提供大数据测算,截至元旦假日第3天,哈尔滨市累计接待游客304.79万人次,实现旅游总收入59.14亿元。游客接待量与旅游总收入达到历史峰值。
“不是北欧去不起,而是哈尔滨更有性价比。”
“零下二十摄氏度,我在哈尔滨当‘俄式公主’。”
引言
最近几天,哈尔滨冰雪大世界也屡登社交平台热搜榜。
12月18日上午,第二十五届哈尔滨冰雪大世界开园,不到3小时,预约游玩人数已达40000人。火爆之下,游客现场大喊“退票”的视频却在网络热传。据悉,冰雪大世界有几个热门项目需要线上预约后才能玩,不少游客吐槽,这些项目不仅难约,约上后排队时间也很长,以致引发不满。舆情发酵后,次日,景区发布致歉声明并推出整改措施,哈尔滨文旅局领导赴冰雪大世界现场督导。
今天,我们通过Python采集点评网站(携程)上网友对哈尔滨冰雪大世界的评价,通过数据分析一下游客对冰雪大世界的各个不满意的点和值得学习的点。
数据采集
数据采集是数据分析的前提,在数据采集阶段,我选择了在携程网站上获取用户公开评价冰雪大世界的数据。使用了Python编程语言,结合相关库如Requests和JSON,通过网页爬虫技术实现了数据的自动抓取。共采集到5528条公开评价数据。
采集难度★★
数据集展示
| _id | publishTime | score | content | publishTypeTag | ipLocatedName | touristTypeDisplay | |
|---|---|---|---|---|---|---|---|
| 0 | 180204656 | /Date(1703671819000+0800)/ | 5 | 太壮观啦,上一次是10年前来的,变化很大… | 2023-12-27 发布点评 | 上海 | 情侣夫妻 |
需要采集数据的可以联系我~
vvvvvv:176-1035-2720
数据预处理
使用了Python中一些强大的数据处理和分析工具,包括:
Pandas:用于数据清洗和整理。
Numpy:进行数学运算,如计算评分占比。
Pyecharts:生成可视化图表,直观展示分析结果。
预处理了发布日期的杂乱文字,还将一些分值拆分了出来。
| _id | publishTime | score | content | publishTypeTag | ipLocatedName | touristTypeDisplay | 景色 | 趣味 | 性价比 | |
|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 180204656 | /Date(1703671819000+0800)/ | 5 | 太壮观啦,上一次是10年前来的,变化很大… | 2023-12-27 | 上海 | 情侣夫妻 | 5 | 5 | 5 |
数据分析
通过pyecharts配合pandas、numpy进行了各个指标的分析。
评价总体情况分析
统计不同评分的占比,观察整体满意度。
本人浅薄分析
-
总体评分分布:
- 大多数用户给予景区较高的评分,特别是5分和4分,分别占总评价的69.05%和13.44%。可以看出大多数的游客对景区的整体体验是持积极态度。
-
主要评分集中在高分:
- 有近90%的用户给予3分及以上的评分,说明整体来说,景区受到了较为积极的评价。
各游客人群占比分析
通过用户评价中提到的信息,分析不同人群的占比。
本人浅薄分析
- 主要人群占比:家庭亲子、朋友出游和情侣夫妻是该景区的主要游客群体,分别占比较大。可以看出冰雪大世界在家庭、朋友和情侣旅行市场有较好的吸引力。
- 其他出游和商务出差占比较低:相较于其他出游和商务出差,这两类人群在评价中的占比相对较低。可以看出该景区的特色更适合休闲度假和亲子游,而在商务和其他类型旅行方面有发展空间。
各评分雷达图
本人浅薄分析
- 总体评分较高:雷达图上各项评分都在4分以上,显示大多数游客对景区的各方面评价都较为满意。这是一个积极的信号,说明景区在整体上受到游客的好评。
- 景色和景区评分相对较高:从雷达图中可以看出,景色和景区方面的评分较高,可能是景区的自然风光和整体设计得到了游客的好评。这是景区的优势,值得进一步宣传。
差评词云-可视化
差评:分值为1、2的定义为差评
本人浅薄分析
问题关键词:预约、排队、滑梯、摩天轮、体验、小时、退票、黄牛是差评中出现频率较高的关键词。这些词反映了一些问题,如预约流程、排队体验、设备运行时间等。景区可能需要关注这些方面,以改善游客体验。
好评词云-可视化
文末有福利领取哦~
👉一、Python所有方向的学习路线
Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
👉二、Python必备开发工具
👉三、Python视频合集
观看零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
👉 四、实战案例
光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(文末领读者福利)
👉五、Python练习题
检查学习结果。
👉六、面试资料
我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。
👉因篇幅有限,仅展示部分资料,这份完整版的Python全套学习资料已经上传