target_label: __address__
- action: labelmap
regex: __meta_kubernetes_service_label_(.+)
- action: replace
source_labels:
- __meta_kubernetes_namespace
target_label: kubernetes_namespace
- action: replace
source_labels:
- __meta_kubernetes_service_name
target_label: kubernetes_name
- job_name: kubernetes-services
kubernetes_sd_configs:
- role: service
metrics_path: /probe
params:
module:
- http_2xx
relabel_configs:
- action: keep
regex: true
source_labels:
- __meta_kubernetes_service_annotation_prometheus_io_probe
- source_labels:
- __address__
target_label: __param_target
- replacement: blackbox
target_label: __address__
- source_labels:
- __param_target
target_label: instance
- action: labelmap
regex: __meta_kubernetes_service_label_(.+)
- source_labels:
- __meta_kubernetes_namespace
target_label: kubernetes_namespace
- source_labels:
- __meta_kubernetes_service_name
target_label: kubernetes_name
- job_name: kubernetes-pods
kubernetes_sd_configs:
- role: pod
relabel_configs:
- action: keep
regex: true
source_labels:
- __meta_kubernetes_pod_annotation_prometheus_io_scrape
- action: replace
regex: (.+)
source_labels:
- __meta_kubernetes_pod_annotation_prometheus_io_path
target_label: __metrics_path__
- action: replace
regex: ([^:]+)(?::\d+)?;(\d+)
replacement: $1:$2
source_labels:
- __address__
- __meta_kubernetes_pod_annotation_prometheus_io_port
target_label: __address__
- action: labelmap
regex: __meta_kubernetes_pod_label_(.+)
- action: replace
source_labels:
- __meta_kubernetes_namespace
target_label: kubernetes_namespace
- action: replace
source_labels:
- __meta_kubernetes_pod_name
target_label: kubernetes_pod_name
alerting:
alertmanagers:
- static_configs:
- targets: ["alertmanager:80"]
创建
[root@k8s-master prometheus-k8s]# kubectl apply -f prometheus-configmap.yaml
### 3.5 有状态部署prometheus
这里使用storageclass进行动态供给,给prometheus的数据进行持久化,具体实现办法,可以查看之前的文章《k8s中的NFS动态存储供给》,除此之外可以使用静态供给的prometheus-statefulset-static-pv.yaml进行持久化
[root@k8s-master prometheus-k8s]# vim prometheus-statefulset.yaml apiVersion: apps/v1 kind: StatefulSet metadata: name: prometheus namespace: kube-system labels: k8s-app: prometheus kubernetes.io/cluster-service: "true" addonmanager.kubernetes.io/mode: Reconcile version: v2.2.1 spec: serviceName: "prometheus" replicas: 1 podManagementPolicy: "Parallel" updateStrategy: type: "RollingUpdate" selector: matchLabels: k8s-app: prometheus template: metadata: labels: k8s-app: prometheus annotations: scheduler.alpha.kubernetes.io/critical-pod: '' spec: priorityClassName: system-cluster-critical serviceAccountName: prometheus initContainers: - name: "init-chown-data" image: "busybox:latest" imagePullPolicy: "IfNotPresent" command: ["chown", "-R", "65534:65534", "/data"] volumeMounts: - name: prometheus-data mountPath: /data subPath: "" containers: - name: prometheus-server-configmap-reload image: "jimmidyson/configmap-reload:v0.1" imagePullPolicy: "IfNotPresent" args: - --volume-dir=/etc/config - --webhook-url=http://localhost:9090/-/reload volumeMounts: - name: config-volume mountPath: /etc/config readOnly: true resources: limits: cpu: 10m memory: 10Mi requests: cpu: 10m memory: 10Mi
- name: prometheus-server
image: "prom/prometheus:v2.2.1"
imagePullPolicy: "IfNotPresent"
args:
- --config.file=/etc/config/prometheus.yml
- --storage.tsdb.path=/data
- --web.console.libraries=/etc/prometheus/console_libraries
- --web.console.templates=/etc/prometheus/consoles
- --web.enable-lifecycle
ports:
- containerPort: 9090
readinessProbe:
httpGet:
path: /-/ready
port: 9090
initialDelaySeconds: 30
timeoutSeconds: 30
livenessProbe:
httpGet:
path: /-/healthy
port: 9090
initialDelaySeconds: 30
timeoutSeconds: 30
# based on 10 running nodes with 30 pods each
resources:
limits:
cpu: 200m
memory: 1000Mi
requests:
cpu: 200m
memory: 1000Mi
volumeMounts:
- name: config-volume
mountPath: /etc/config
- name: prometheus-data
mountPath: /data
subPath: ""
- name: prometheus-rules
mountPath: /etc/config/rules
terminationGracePeriodSeconds: 300
volumes:
- name: config-volume
configMap:
name: prometheus-config
- name: prometheus-rules
configMap:
name: prometheus-rules
volumeClaimTemplates:
- metadata: name: prometheus-data spec: storageClassName: managed-nfs-storage #存储类根据自己的存储类名字修改 accessModes: - ReadWriteOnce resources: requests: storage: "16Gi"
创建
[root@k8s-master prometheus-k8s]# kubectl apply -f prometheus-statefulset.yaml
检查状态
[root@k8s-master prometheus-k8s]# kubectl get pod -n kube-system NAME READY STATUS RESTARTS AGE coredns-5bd5f9dbd9-wv45t 1/1 Running 1 8d kubernetes-dashboard-7d77666777-d5ng4 1/1 Running 5 14d prometheus-0 2/2 Running 6 14d
可以看到一个prometheus-0的pod,这就刚才使用statefulset控制器进行的有状态部署,两个容器的状态为Runing则是正常,如果不为Runing可以使用kubectl describe pod prometheus-0 -n kube-system查看报错详情
### 3.6 创建service暴露访问端口
此处使用nodePort固定一个访问端口,不适用随机端口,便于访问
[root@k8s-master prometheus-k8s]# vim prometheus-service.yaml kind: Service apiVersion: v1 metadata: name: prometheus namespace: kube-system labels: kubernetes.io/name: "Prometheus" kubernetes.io/cluster-service: "true" addonmanager.kubernetes.io/mode: Reconcile spec: type: NodePort ports: - name: http port: 9090 protocol: TCP targetPort: 9090 nodePort: 30090 #固定的对外访问的端口 selector: k8s-app: prometheus
创建
[root@k8s-master prometheus-k8s]# kubectl apply -f prometheus-service.yaml
检查
[root@k8s-master prometheus-k8s]# kubectl get pod,svc -n kube-system NAME READY STATUS RESTARTS AGE pod/coredns-5bd5f9dbd9-wv45t 1/1 Running 1 8dpod/kubernetes-dashboard-7d77666777-d5ng4 1/1 Running 5 14dpod/prometheus-0 2/2 Running 6 14dNAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE service/kube-dns ClusterIP 10.0.0.2 53/UDP,53/TCP 13dservice/kubernetes-dashboard NodePort 10.0.0.127 443:30001/TCP 16dservice/prometheus NodePort 10.0.0.33 9090:30090/TCP 13d
### 3.7 web访问
使用任意一个NodeIP加端口进行访问,访问地址:http://NodeIP:Port ,此例就是:`http://192.168.73.139:30090`
访问成功的界面如图所示:
### 4 在K8S平台部署Grafana
通过上面的web访问,可以看出prometheus自带的UI界面是没有多少功能的,可视化展示的功能不完善,不能满足日常的监控所需,因此常常我们需要再结合Prometheus+Grafana的方式来进行可视化的数据展示
官网地址:
https://github.com/kubernetes/kubernetes/tree/master/cluster/addons/prometheus
https://grafana.com/grafana/download
刚才下载的项目中已经写好了Grafana的yaml,根据自己的环境进行修改
### 4.1 使用StatefulSet部署grafana
[root@k8s-master prometheus-k8s]# vim grafana.yaml apiVersion: apps/v1 kind: StatefulSet metadata: name: grafana namespace: kube-system spec: serviceName: "grafana" replicas: 1 selector: matchLabels: app: grafana template: metadata: labels: app: grafana spec: containers: - name: grafana image: grafana/grafana ports: - containerPort: 3000 protocol: TCP resources: limits: cpu: 100m memory: 256Mi requests: cpu: 100m memory: 256Mi volumeMounts: - name: grafana-data mountPath: /var/lib/grafana subPath: grafana securityContext: fsGroup: 472 runAsUser: 472 volumeClaimTemplates:
- metadata: name: grafana-data spec: storageClassName: managed-nfs-storage #和prometheus使用同一个存储类 accessModes: - ReadWriteOnce resources: requests: storage: "1Gi"
apiVersion: v1 kind: Service metadata: name: grafana namespace: kube-system spec: type: NodePort ports:
- port : 80 targetPort: 3000 nodePort: 30091 selector: app: grafana
### 4.2 Grafana的web访问
使用任意一个NodeIP加端口进行访问,访问地址:http://NodeIP:Port ,此例就是:http://192.168.73.139:30091
成功访问界面如下,会需要进行账号密码登陆,默认账号密码都为admin,登陆之后会让修改密码

登陆之后的界面如下

第一步需要进行数据源添加,点击create your first data source数据库图标,根据下图所示进行添加即可

第二步,添加完了之后点击底部的绿色的Save&Test,会成功提示Data sourse is working,则表示数据源添加成功
### 4.3 监控K8S集群中Pod、Node、资源对象数据的方法
1)Pod
kubelet的节点使用cAdvisor提供的metrics接口获取该节点所有Pod和容器相关的性能指标数据,安装kubelet默认就开启了
暴露接口地址:
https://NodeIP:10255/metrics/cadvisor
https://NodeIP:10250/metrics/cadvisor
2)Node
需要使用node\_exporter收集器采集节点资源利用率。
https://github.com/prometheus/node\_exporter
使用文档:https://prometheus.io/docs/guides/node-exporter/
使用node\_exporter.sh脚本分别在所有服务器上部署node\_exporter收集器,不需要修改可直接运行脚本
[root@k8s-master prometheus-k8s]# cat node_exporter.sh #!/bin/bashwget github.com/prometheus/…
tar zxf node_exporter-0.17.0.linux-amd64.tar.gz mv node_exporter-0.17.0.linux-amd64 /usr/local/node_exporter
cat </usr/lib/systemd/system/node_exporter.service [Unit] Description=prometheus.io
[Service] Restart=on-failure ExecStart=/usr/local/node_exporter/node_exporter --collector.systemd --collector.systemd.unit-whitelist=(docker|kubelet|kube-proxy|flanneld).service
[Install] WantedBy=multi-user.target EOF
systemctl daemon-reload systemctl enable node_exporter systemctl restart node_exporter [root@k8s-master prometheus-k8s]# ./node_exporter.sh
检测node\_exporter的进程,是否生效
[root@k8s-master prometheus-k8s]# ps -ef|grep node_exporter root 6227 1 0 Oct08 ? 00:06:43 /usr/local/node_exporter/node_exporter --collector.systemd --collector.systemd.unit-whitelist=(docker|kubelet|kube-proxy|flanneld).service root 118269 117584 0 23:27 pts/0 00:00:00 grep --color=auto node_exporter
3)资源对象
kube-state-metrics采集了k8s中各种资源对象的状态信息,只需要在master节点部署就行
创建rbac的yaml对metrics进行授权
[root@k8s-master prometheus-k8s]# vim kube-state-metrics-rbac.yaml apiVersion: v1 kind: ServiceAccount metadata: name: kube-state-metrics namespace: kube-system labels: kubernetes.io/cluster-service: "true" addonmanager.kubernetes.io/mode: Reconcile
apiVersion: rbac.authorization.k8s.io/v1 kind: ClusterRole metadata: name: kube-state-metrics labels: kubernetes.io/cluster-service: "true" addonmanager.kubernetes.io/mode: Reconcile rules:
- apiGroups: [""]
resources:
- configmaps
- secrets
- nodes
- pods
- services
- resourcequotas
- replicationcontrollers
- limitranges
- persistentvolumeclaims
- persistentvolumes
- namespaces
- endpoints verbs: ["list", "watch"]
- apiGroups: ["extensions"]
resources:
- daemonsets
- deployments
- replicasets verbs: ["list", "watch"]
- apiGroups: ["apps"]
resources:
- statefulsets verbs: ["list", "watch"]
- apiGroups: ["batch"]
resources:
- cronjobs
- jobs verbs: ["list", "watch"]
- apiGroups: ["autoscaling"]
resources:
- horizontalpodautoscalers verbs: ["list", "watch"]
apiVersion: rbac.authorization.k8s.io/v1 kind: Role metadata: name: kube-state-metrics-resizer namespace: kube-system labels: kubernetes.io/cluster-service: "true" addonmanager.kubernetes.io/mode: Reconcile rules:
- apiGroups: [""]
resources:
- pods verbs: ["get"]
- apiGroups: ["extensions"]
resources:
- deployments resourceNames: ["kube-state-metrics"] verbs: ["get", "update"]
apiVersion: rbac.authorization.k8s.io/v1 kind: ClusterRoleBinding metadata: name: kube-state-metrics labels: kubernetes.io/cluster-service: "true" addonmanager.kubernetes.io/mode: Reconcile roleRef: apiGroup: rbac.authorization.k8s.io kind: ClusterRole name: kube-state-metrics subjects:
- kind: ServiceAccount name: kube-state-metrics namespace: kube-system
apiVersion: rbac.authorization.k8s.io/v1 kind: RoleBinding metadata: name: kube-state-metrics namespace: kube-system labels: kubernetes.io/cluster-service: "true" addonmanager.kubernetes.io/mode: Reconcile roleRef: apiGroup: rbac.authorization.k8s.io kind: Role name: kube-state-metrics-resizer subjects:
- kind: ServiceAccount name: kube-state-metrics namespace: kube-system [root@k8s-master prometheus-k8s]# kubectl apply -f kube-state-metrics-rbac.yaml 编写Deployment和ConfigMap的yaml进行metrics pod部署,不需要进行修改 [root@k8s-master prometheus-k8s]# cat kube-state-metrics-deployment.yaml apiVersion: apps/v1 kind: Deployment metadata: name: kube-state-metrics namespace: kube-system labels: k8s-app: kube-state-metrics kubernetes.io/cluster-service: "true" addonmanager.kubernetes.io/mode: Reconcile version: v1.3.0 spec: selector: matchLabels: k8s-app: kube-state-metrics version: v1.3.0 replicas: 1 template: metadata: labels: k8s-app: kube-state-metrics version: v1.3.0 annotations: scheduler.alpha.kubernetes.io/critical-pod: '' spec: priorityClassName: system-cluster-critical serviceAccountName: kube-state-metrics containers: - name: kube-state-metrics image: lizhenliang/kube-state-metrics:v1.3.0 ports: - name: http-metrics containerPort: 8080 - name: telemetry containerPort: 8081 readinessProbe: httpGet: path: /healthz port: 8080 initialDelaySeconds: 5 timeoutSeconds: 5 - name: addon-resizer image: lizhenliang/addon-resizer:1.8.3 resources: limits: cpu: 100m memory: 30Mi requests: cpu: 100m memory: 30Mi env: - name: MY_POD_NAME valueFrom: fieldRef: fieldPath: metadata.name - name: MY_POD_NAMESPACE valueFrom: fieldRef: fieldPath: metadata.namespace volumeMounts: - name: config-volume mountPath: /etc/config command: - /pod_nanny - --config-dir=/etc/config - --container=kube-state-metrics - --cpu=100m - --extra-cpu=1m - --memory=100Mi - --extra-memory=2Mi - --threshold=5 - --deployment=kube-state-metrics volumes: - name: config-volume configMap: name: kube-state-metrics-config
Config map for resource configuration.
apiVersion: v1 kind: ConfigMap metadata: name: kube-state-metrics-config namespace: kube-system labels: k8s-app: kube-state-metrics kubernetes.io/cluster-service: "true" addonmanager.kubernetes.io/mode: Reconcile data: NannyConfiguration: |- apiVersion: nannyconfig/v1alpha1 kind: NannyConfiguration [root@k8s-master prometheus-k8s]# kubectl apply -f kube-state-metrics-deployment.yaml
2.编写Service的yaml对metrics进行端口暴露
[root@k8s-master prometheus-k8s]# cat kube-state-metrics-service.yaml apiVersion: v1 kind: Service metadata: name: kube-state-metrics namespace: kube-system labels: kubernetes.io/cluster-service: "true" addonmanager.kubernetes.io/mode: Reconcile kubernetes.io/name: "kube-state-metrics" annotations: prometheus.io/scrape: 'true' spec: ports:
- name: http-metrics port: 8080 targetPort: http-metrics protocol: TCP
- name: telemetry port: 8081 targetPort: telemetry protocol: TCP selector: k8s-app: kube-state-metrics [root@k8s-master prometheus-k8s]# kubectl apply -f kube-state-metrics-service.yaml
3.检查pod和svc的状态,可以看到正常运行了pod/kube-state-metrics-7c76bdbf68-kqqgd 和对外暴露了8080和8081端口
[root@k8s-master prometheus-k8s]# kubectl get pod,svc -n kube-system NAME READY STATUS RESTARTS AGE pod/alertmanager-5d75d5688f-fmlq6 2/2 Running 0 9dpod/coredns-5bd5f9dbd9-wv45t 1/1 Running 1 9dpod/grafana-0 1/1 Running 2 15dpod/kube-state-metrics-7c76bdbf68-kqqgd 2/2 Running 6 14dpod/kubernetes-dashboard-7d77666777-d5ng4 1/1 Running 5 16dpod/prometheus-0 2/2 Running 6 15dNAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE service/alertmanager ClusterIP 10.0.0.207 80/TCP 13dservice/grafana NodePort 10.0.0.74 80:30091/TCP 15dservice/kube-dns ClusterIP 10.0.0.2 53/UDP,53/TCP 14dservice/kube-state-metrics ClusterIP 10.0.0.194 8080/TCP,8081/TCP 14dservice/kubernetes-dashboard NodePort 10.0.0.127 443:30001/TCP 17dservice/prometheus NodePort 10.0.0.33 9090:30090/TCP 14d[root@k8s-master prometheus-k8s]#
### 5 使用Grafana可视化展示Prometheus监控数据
通常在使用Prometheus采集数据的时候我们需要监控K8S集群中Pod、Node、资源对象,因此我们需要安装对应的插件和资源采集器来提供api进行数据获取,在4.3中我们已经配置好,我们也可以使用Prometheus的UI界面中的Staus菜单下的Target中的各个采集器的状态情况,如图所示:

只有当我们各个Target的状态都是UP状态时,我们可以使用自带的的界面去获取到某一监控项的相关的数据,如图所示:

从上面的图中可以看出Prometheus的界面可视化展示的功能较单一,不能满足需求,因此我们需要结合Grafana来进行可视化展示Prometheus监控数据,在上一章节,已经成功部署了Granfana,因此需要在使用的时候添加dashboard和Panel来设计展示相关的监控项,但是实际上在Granfana社区里面有很多成熟的模板,我们可以直接使用,然后根据自己的环境修改Panel中的查询语句来获取数据
https://grafana.com/grafana/dashboards

推荐模板:
集群资源监控的模板号:3119,如图所示进行添加



当模板添加之后如果某一个Panel不显示数据,可以点击Panel上的编辑,查询PromQL语句,然后去Prometheus自己的界面上进行调试PromQL语句是否可以获取到值,最后调整之后的监控界面如图所示


资源状态监控:6417
同理,添加资源状态的监控模板,然后经过调整之后的监控界面如图所示,可以获取到k8s中各种资源状态的监控展示

Node监控:9276
同理,添加资源状态的监控模板,然后经过调整之后的监控界面如图所示,可以获取到各个node上的基本情况

### 6 在K8S中部署Alertmanager
### 6.1 部署Alertmanager的实现步骤

### 6.2 部署告警
我们以Email来进行实现告警信息的发送
首先需要准备一个发件邮箱,开启stmp发送功能
使用configmap存储告警规则,编写报警规则的yaml文件,可根据自己的实际情况进行修改和添加报警的规则,prometheus比zabbix就麻烦在这里,所有的告警规则需要自己去定义
[root@k8s-master prometheus-k8s]# vim prometheus-rules.yaml apiVersion: v1 kind: ConfigMap metadata: name: prometheus-rules namespace: kube-system data: general.rules: | groups: - name: general.rules rules: - alert: InstanceDown expr: up == 0 for: 1m labels: severity: error annotations: summary: "Instance {{ labels.instance }} 停止工作" description: "{{ labels.instance }} job {{ labels.job }} 已经停止5分钟以上." node.rules: | groups: - name: node.rules rules: - alert: NodeFilesystemUsage expr: 100 - (node_filesystem_free_bytes{fstype=~"ext4|xfs"} / node_filesystem_size_bytes{fstype=~"ext4|xfs"} * 100) > 80 for: 1m labels: severity: warning annotations: summary: "Instance {{ labels.instance }} : {{ labels.mountpoint }} 分区使用率过高" description: "{{ labels.instance }}: {{ labels.mountpoint }} 分区使用大于80% (当前值: {{ value }})"
- alert: NodeMemoryUsage
expr: 100 - (node_memory_MemFree_bytes+node_memory_Cached_bytes+node_memory_Buffers_bytes) / node_memory_MemTotal_bytes * 10
0 > 80 for: 1m labels: severity: warning annotations: summary: "Instance {{ labels.instance }} 内存使用率过高" description: "{{ labels.instance }}内存使用大于80% (当前值: {{ $value }})"
- alert: NodeCPUUsage
expr: 100 - (avg(irate(node_cpu_seconds_total{mode="idle"}[5m])) by (instance) * 100) > 60
for: 1m
labels:
severity: warning
annotations:
summary: "Instance {{ $labels.instance }} CPU使用率过高"
description: "{{ $labels.instance }}CPU使用大于60% (当前值: {{ $value }})"
[root@k8s-master prometheus-k8s]# kubectl apply -f prometheus-rules.yaml
3.编写告警configmap的yaml文件部署,增加alertmanager告警配置,进行配置邮箱发送地址
[root@k8s-master prometheus-k8s]# vim alertmanager-configmap.yaml apiVersion: v1 kind: ConfigMap metadata: name: alertmanager-config namespace: kube-system labels: kubernetes.io/cluster-service: "true" addonmanager.kubernetes.io/mode: EnsureExists data: alertmanager.yml: | global: resolve_timeout: 5m smtp_smarthost: 'xxx.com.cn:25' #登陆邮件进行查看 smtp_from: 'xxx@126.com.cn' #根据自己申请的发件邮箱进行配置 smtp_auth_username: 'xxx@qq.com.cn' smtp_auth_password: 'xxxxx'
receivers:
- name: default-receiver
email_configs:
- to: "zhangdongdong27459@goldwind.com.cn"
route:
group_interval: 1m
group_wait: 10s
receiver: default-receiver
repeat_interval: 1m
[root@k8s-master prometheus-k8s]# kubectl apply -f alertmanager-configmap.yaml
4.创建PVC进行数据持久化,我这个yaml文件使用的跟Prometheus安装时用的存储类来进行自动供给,需要根据自己的实际情况修改
[root@k8s-master prometheus-k8s]# vim alertmanager-pvc.yaml apiVersion: v1 kind: PersistentVolumeClaim metadata: name: alertmanager namespace: kube-system labels: kubernetes.io/cluster-service: "true" addonmanager.kubernetes.io/mode: EnsureExists spec: storageClassName: managed-nfs-storage accessModes: - ReadWriteOnce resources: requests: storage: "2Gi" [root@k8s-master prometheus-k8s]# kubectl apply -f alertmanager-pvc.yaml
5.编写deployment的yaml来部署alertmanager的pod
[root@k8s-master prometheus-k8s]# vim alertmanager-deployment.yaml apiVersion: apps/v1 kind: Deployment metadata: name: alertmanager namespace: kube-system labels: k8s-app: alertmanager kubernetes.io/cluster-service: "true" addonmanager.kubernetes.io/mode: Reconcile version: v0.14.0 spec: replicas: 1 selector: matchLabels: k8s-app: alertmanager version: v0.14.0 template: metadata: labels: k8s-app: alertmanager version: v0.14.0 annotations: scheduler.alpha.kubernetes.io/critical-pod: '' spec: priorityClassName: system-cluster-critical containers: - name: prometheus-alertmanager image: "prom/alertmanager:v0.14.0" imagePullPolicy: "IfNotPresent" args: - --config.file=/etc/config/alertmanager.yml - --storage.path=/data - --web.external-url=/ ports: - containerPort: 9093 readinessProbe: httpGet: path: /#/status port: 9093 initialDelaySeconds: 30 timeoutSeconds: 30 volumeMounts: - name: config-volume mountPath: /etc/config - name: storage-volume mountPath: "/data" subPath: "" resources: limits: cpu: 10m memory: 50Mi requests: cpu: 10m memory: 50Mi - name: prometheus-alertmanager-configmap-reload image: "jimmidyson/configmap-reload:v0.1" imagePullPolicy: "IfNotPresent" args: - --volume-dir=/etc/config - --webhook-url=http://localhost:9093/-/reload volumeMounts: - name: config-volume mountPath: /etc/config readOnly: true resources: limits: cpu: 10m memory: 10Mi requests: cpu: 10m memory: 10Mi volumes: - name: config-volume configMap: name: alertmanager-config - name: storage-volume persistentVolumeClaim: claimName: alertmanager [root@k8s-master prometheus-k8s]# kubectl apply -f alertmanager-deployment.yaml
6.创建 alertmanager的service对外暴露的端口
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
了解详情》docs.qq.com/doc/DSlVlZExWQ0FRSE9H