基于深度学习神经网络YOLOv5目标检测的安全帽识别系统_安全帽yolov5改进

41 阅读3分钟

from models.experimental import attempt_load from utils.datasets import LoadStreams, LoadImages from utils.general import check_img_size, check_requirements, check_imshow, colorstr, non_max_suppression,
apply_classifier, scale_coords, xyxy2xywh, strip_optimizer, set_logging, increment_path, save_one_box from utils.plots import colors, plot_one_box from utils.torch_utils import select_device, load_classifier, time_sync

@torch.no_grad() def run(weights='helmet.pt', # model.pt path(s) source='data/images', # file/dir/URL/glob, 0 for webcam imgsz=640, # inference size (pixels) conf_thres=0.25, # confidence threshold iou_thres=0.45, # NMS IOU threshold max_det=1000, # maximum detections per image device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu view_img=False, # show results save_txt=False, # save results to *.txt save_conf=False, # save confidences in --save-txt labels save_crop=False, # save cropped prediction boxes nosave=False, # do not save images/videos classes=None, # filter by class: --class 0, or --class 0 2 3 agnostic_nms=False, # class-agnostic NMS augment=False, # augmented inference visualize=False, # visualize features update=False, # update all models project='runs/detect', # save results to project/name name='exp', # save results to project/name exist_ok=False, # existing project/name ok, do not increment line_thickness=3, # bounding box thickness (pixels) hide_labels=False, # hide labels hide_conf=False, # hide confidences half=False, # use FP16 half-precision inference ): save_img = not nosave and not source.endswith('.txt') # save inference images webcam = source.isnumeric() or source.endswith('.txt') or source.lower().startswith( ('rtsp://', 'rtmp://', 'http://', 'https://'))

# Directories
save_dir = increment_path(Path(project) / name, exist_ok=exist_ok)  # increment run
(save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True)  # make dir

# Initialize
set_logging()
device = select_device(device)
half &= device.type != 'cpu'  # half precision only supported on CUDA

# Load model
w = weights[0] if isinstance(weights, list) else weights
classify, pt, onnx = False, w.endswith('.pt'), w.endswith('.onnx')  # inference type
stride, names = 64, [f'class{i}' for i in range(1000)]  # assign defaults
if pt:
    model = attempt_load(weights, map_location=device)  # load FP32 model
    stride = int(model.stride.max())  # model stride
    names = model.module.names if hasattr(model, 'module') else model.names  # get class names
    names[0] = "nohat"
    if half:
        model.half()  # to FP16
    if classify:  # second-stage classifier
        modelc = load_classifier(name='resnet50', n=2)  # initialize
        modelc.load_state_dict(torch.load('resnet50.pt', map_location=device)['model']).to(device).eval()
elif onnx:
    check_requirements(('onnx', 'onnxruntime'))
    import onnxruntime
    session = onnxruntime.InferenceSession(w, None)
imgsz = check_img_size(imgsz, s=stride)  # check image size

# Dataloader
if webcam:
    view_img = check_imshow()
    cudnn.benchmark = True  # set True to speed up constant image size inference
    dataset = LoadStreams(source, img_size=imgsz, stride=stride)
    bs = len(dataset)  # batch_size
else:
    dataset = LoadImages(source, img_size=imgsz, stride=stride)
    bs = 1  # batch_size
vid_path, vid_writer = [None] * bs, [None] * bs

# Run inference
if pt and device.type != 'cpu':
    model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters())))  # run once
t0 = time.time()
for path, img, im0s, vid_cap in dataset:
    if pt:
        img = torch.from_numpy(img).to(device)
        img = img.half() if half else img.float()  # uint8 to fp16/32
    elif onnx:
        img = img.astype('float32')
    img /= 255.0  # 0 - 255 to 0.0 - 1.0
    if len(img.shape) == 3:
        img = img[None]  # expand for batch dim

    # Inference
    t1 = time_sync()
    if pt:
        visualize = increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else False
        pred = model(img, augment=augment, visualize=visualize)[0]
    elif onnx:
        pred = torch.tensor(session.run([session.get_outputs()[0].name], {session.get_inputs()[0].name: img}))

    # NMS
    pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det)
    t2 = time_sync()

    # Second-stage classifier (optional)
    if classify:
        pred = apply_classifier(pred, modelc, img, im0s)

    # Process predictions
    for i, det in enumerate(pred):  # detections per image
        if webcam:  # batch_size >= 1
            p, s, im0, frame = path[i], f'{i}: ', im0s[i].copy(), dataset.count
        else:
            p, s, im0, frame = path, '', im0s.copy(), getattr(dataset, 'frame', 0)

        p = Path(p)  # to Path
        save_path = str(save_dir / p.name)  # img.jpg
        txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}')  # img.txt
        s += '%gx%g ' % img.shape[2:]  # print string
        gn = torch.tensor(im0.shape)[[1, 0, 1, 0]]  # normalization gain whwh
        imc = im0.copy() if save_crop else im0  # for save_crop
        if len(det):
            # Rescale boxes from img_size to im0 size
            det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()

            # Print results
            for c in det[:, -1].unique():
                n = (det[:, -1] == c).sum()  # detections per class
                s += f"{n} {names[int(c)]}{'s' * (n > 1)}, "  # add to string

            # Write results
            for *xyxy, conf, cls in reversed(det):
                if save_txt:  # Write to file
                    xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist()  # normalized xywh
                    line = (cls, *xywh, conf) if save_conf else (cls, *xywh)  # label format
                    with open(txt_path + '.txt', 'a') as f:
                        f.write(('%g ' * len(line)).rstrip() % line + '\n')

                if save_img or save_crop or view_img:  # Add bbox to image
                    c = int(cls)  # integer class
                    label = None if hide_labels else (names[c] if hide_conf else f'{names[c]} {conf:.2f}')
                    plot_one_box(xyxy, im0, label=label, color=colors(c, True), line_thickness=line_thickness)
                    if save_crop:
                        save_one_box(xyxy, imc, file=save_dir / 'crops' / names[c] / f'{p.stem}.jpg', BGR=True)

        # Print time (inference + NMS)
        print(f'{s}Done. ({t2 - t1:.3f}s)')

        # Stream results
        if view_img:
            cv2.imshow(str(p), im0)
            cv2.waitKey(1)  # 1 millisecond

        # Save results (image with detections)
        if save_img:
            if dataset.mode == 'image':
                cv2.imwrite(save_path, im0)
            else:  # 'video' or 'stream'
                if vid_path[i] != save_path:  # new video
                    vid_path[i] = save_path
                    if isinstance(vid_writer[i], cv2.VideoWriter):
                        vid_writer[i].release()  # release previous video writer
                    if vid_cap:  # video
                        fps = vid_cap.get(cv2.CAP_PROP_FPS)
                        w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
                        h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
                    else:  # stream
                        fps, w, h = 30, im0.shape[1], im0.shape[0]
                        save_path += '.mp4'
                    vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
                vid_writer[i].write(im0)

if save_txt or save_img:
    s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
    print(f"Results saved to {colorstr('bold', save_dir)}{s}")

if update:
    strip_optimizer(weights)  # update model (to fix SourceChangeWarning)

print(f'Done. ({time.time() - t0:.3f}s)')
return im0

def parse_opt(): parser = argparse.ArgumentParser() parser.add_argument('--weights', nargs='+', type=str, default='helmet.pt', help='model.pt path(s)') parser.add_argument('--source', type=str, default='0', help='file/dir/URL/glob, 0 for webcam') parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='inference size (pixels)') parser.add_argument('--conf-thres', type=float, default=0.25, help='confidence threshold') parser.add_argument('--iou-thres', type=float, default=0.45, help='NMS IoU threshold') parser.add_argument('--max-det', type=int, default=1000, help='maximum detections per image') parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') parser.add_argument('--view-img', action='store_true', help='show results') parser.add_argument('--save-txt', action='store_true', help='save results to *.txt') parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels') parser.add_argument('--save-crop', action='store_true', help='save cropped prediction boxes') parser.add_argument('--nosave', action='store_true', help='do not save images/videos') parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --class 0, or --class 0 2 3') parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS') parser.add_argument('--augment', action='store_true', help='augmented inference') parser.add_argument('--visualize', action='store_true', help='visualize features') parser.add_argument('--update', action='store_true', help='update all models') parser.add_argument('--project', default='runs/detect', help='save results to project/name') parser.add_argument('--name', default='exp', help='save results to project/name') parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment') parser.add_argument('--line-thickness', default=3, type=int, help='bounding box thickness (pixels)') parser.add_argument('--hide-labels', default=False, action='store_true', help='hide labels') parser.add_argument('--hide-conf', default=False, action='store_true', help='hide confidences') parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference') opt = parser.parse_args() return opt

def main(opt): print(colorstr('detect: ') + ', '.join(f'{k}={v}' for k, v in vars(opt).items())) check_requirements(exclude=('tensorboard', 'thop')) run(**vars(opt))

if name == "main": opt = parse_opt() main(opt)