- $match:阶段排除pop小于等于100000的文档,将大于100000的文档传到下个阶段
- $count:阶段返回聚合管道中剩余文档的计数,并将该值分配给名为
count的字段。
db.zips.aggregate([
{
"$match": {
"pop": {
"$gt": 100000
}
}
},
{
"$count": "count"
}
])
$group
按指定的表达式对文档进行分组,并将每个不同分组的文档输出到下一个阶段。输出文档包含一个_id字段,该字段按键包含不同的组。
输出文档还可以包含计算字段,该字段保存由$group的_id字段分组的一些accumulator表达式的值。 $group不会输出具体的文档而只是统计信息。
语法
{ $group: { \_id: <expression>, <field1>: { <accumulator1> : <expression1> }, ... } }
_id字段是必填的;但是,可以指定_id值为null来为整个输入文档计算累计值。- 剩余的计算字段是可选的,并使用
<accumulator>运算符进行计算。 _id和<accumulator>表达式可以接受任何有效的表达式。
accumulator操作符
| 名称 | 描述 | 类比sql |
|---|---|---|
| $avg | 计算均值 | avg |
| $first | 返回每组第一个文档,如果有排序,按照排序,如果没有按照默认的存储的顺序返回第一个文档。 | limit 0,1 |
| $last | 返回每组最后一个文档,如果有排序,按照排序,如果没有按照默认的存储的顺序返回最后一个文档。 | - |
| $max | 根据分组,获取集合中所有文档对应值的最大值。 | max |
| $min | 根据分组,获取集合中所有文档对应值的最小值。 | min |
| $push | 将指定的表达式的值添加到一个数组中。 | - |
| $addToSet | 将表达式的值添加到一个集合中(无重复值,无序)。 | - |
| $sum | 计算总和 | sum |
| $stdDevPop | 返回输入值的总体标准偏差(population standard deviation) | - |
| $stdDevSamp | 返回输入值的样本标准偏差(the sample standard deviation) | - |
g
r
o
u
p
阶段的内存限制为
100
M
,默认情况下,如果
s
t
a
g
e
超过此限制,
group阶段的内存限制为100M,默认情况下,如果stage超过此限制,
group阶段的内存限制为100M,默认情况下,如果stage超过此限制,group将产生错误,但是,要允许处理大型数据集,请将allowDiskUse选项设置为true以启用$group操作以写入临时文件。
注意:
- “$addToSet”:expr,如果当前数组中不包含expr,那就将它添加到数组中。
- “$push”:expr,不管expr是什么值,都将它添加到数组中,返回包含所有值的数组。
示例
按照
state分组,并计算每一个state分组的总人数,平均人数以及每个分组的数量
db.zips.aggregate([
{
"$group": {
"\_id": "$state",
"totalPop": {
"$sum": "$pop"
},
"avglPop": {
"$avg": "$pop"
},
"count": {
"$sum": 1
}
}
}
])
查找不重复的所有的
state的值
db.zips.aggregate([
{
"$group": {
"\_id": "$state"
}
}
])
按照
city分组,并且分组内的state字段列表加入到stateItem并显示
db.zips.aggregate([
{
"$group": {
"\_id": "$city",
"stateItem": {
"$push": "$state"
}
}
}
])
下面聚合操作使用系统变量$$ROOT按item对文档进行分组,生成的文档不得超过BSON文档大小限制
db.zips.aggregate([
{
"$group": {
"\_id": "$city",
"item": {
"$push": "$$ROOT"
}
}
}
]).pretty();
$match
过滤文档,仅将符合指定条件的文档传递到下一个管道阶段。
$match接受一个指定查询条件的文档,查询语法与读操作查询语法相同。
语法
{ $match: { <query> } }
管道优化
$match用于对文档进行筛选,之后可以在得到的文档子集上做聚合,$match可以使用除了地理空间之外的所有常规查询操作符,**在实际应用中尽可能将$match放在管道的前面位置**。这样有两个好处:
- 一是可以快速将不需要的文档过滤掉,以减少管道的工作量;
- 二是如果再投射和分组之前执行$match,查询可以使用索引。
使用限制
- 不能在
$match查询中使用$作为聚合管道的一部分。 - 要在
$match阶段使用$text,$match阶段必须是管道的第一阶段。 - 视图不支持文本搜索。
示例
使用 $match做简单的匹配查询,查询缩写是
NY的城市数据
db.zips.aggregate([
{
"$match": {
"state": "NY"
}
}
]).pretty();
使用
m
a
t
c
h
管道选择要处理的文档,然后将结果输出到
match管道选择要处理的文档,然后将结果输出到
match管道选择要处理的文档,然后将结果输出到group管道以计算文档的计数
db.zips.aggregate([
{
"$match": {
"state": "NY"
}
},
{
"$group": {
"\_id": null,
"sum": {
"$sum": "$pop"
},
"avg": {
"$avg": "$pop"
},
"count": {
"$sum": 1
}
}
}
]).pretty();
$unwind
从输入文档解构数组字段以输出每个元素的文档,简单说就是 可以将数组拆分为单独的文档。
语法
要指定字段路径,在字段名称前加上$符并用引号括起来。
{ $unwind: <field path> }
v3.2+支持如下语法
{
$unwind:
{
path: <field path>,
#可选,一个新字段的名称用于存放元素的数组索引。该名称不能以$开头。
includeArrayIndex: <string>,
#可选,default :false,若为true,如果路径为空,缺少或为空数组,则$unwind输出文档
preserveNullAndEmptyArrays: <boolean>
}
}
如果为输入文档中不存在的字段指定路径,或者该字段为空数组,则$unwind默认会忽略输入文档,并且不会输出该输入文档的文档。
版本3.2中的新功能:要输出数组字段丢失的文档,null或空数组,请使用选项preserveNullAndEmptyArrays。
示例
以下聚合使用$unwind为loc数组中的每个元素输出一个文档:
db.zips.aggregate([
{
"$match": {
"\_id": "01002"
}
},
{
"$unwind": "$loc"
}
]).pretty();
db.zips.aggregate([
{
"$match": {
"\_id": "01002"
}
},
{
"$unwind": {
"path": "$loc",
"includeArrayIndex": "locIndex",
"preserveNullAndEmptyArrays": true
}
}
]).pretty();
$project
$project可以从文档中选择想要的字段,和不想要的字段(指定的字段可以是来自输入文档或新计算字段的现有字段),也可以通过管道表达式进行一些复杂的操作,例如数学操作,日期操作,字符串操作,逻辑操作。
语法
$project 管道符的作用是选择字段(指定字段,添加字段,不显示字段,_id:0,排除字段等),重命名字段,派生字段。
{ $project: { <specification(s)> } }
specifications有以下形式:
<field>: <1 or true> 是否包含该字段,field:1/0,表示选择/不选择 field
_id: <0 or false> 是否指定_id字段
<field>: <expression> 添加新字段或重置现有字段的值。 在版本3.6中更改:MongoDB 3.6添加变量REMOVE。如果表达式的计算结果为$$REMOVE,则该字段将排除在输出中。
<field>:<0 or false> v3.4新增功能,指定排除字段
-
默认情况下,_id字段包含在输出文档中。要在输出文档中包含输入文档中的任何其他字段,必须明确指定
p
r
o
j
e
c
t
中的包含。如果指定包含文档中不存在的字段,
project中的包含。 如果指定包含文档中不存在的字段,
project中的包含。如果指定包含文档中不存在的字段,project将忽略该字段包含,并且不会将该字段添加到文档中。
-
默认情况下,id字段包含在输出文档中。要从输出文档中排除id字段,必须明确指定$project中的_id字段为0。
-
v3.4版新增功能-如果指定排除一个或多个字段,则所有其他字段将在输出文档中返回。 如果指定排除_id以外的字段,则不能使用任何其他$project规范表单:即,如果排除字段,则不能指定包含字段,重置现有字段的值或添加新字段。此限制不适用于使用REMOVE变量条件排除字段。
-
v3.6版本中的新功能- 从MongoDB 3.6开始,可以在聚合表达式中使用变量REMOVE来有条件地禁止一个字段。
-
要添加新字段或重置现有字段的值,请指定字段名称并将其值设置为某个表达式。
-
要将字段值直接设置为数字或布尔文本,而不是将字段设置为解析为文字的表达式,请使用
l
i
t
e
r
a
l
操作符。否则,
literal操作符。否则,
literal操作符。否则,project会将数字或布尔文字视为包含或排除该字段的标志。
- 通过指定新字段并将其值设置为现有字段的字段路径,可以有效地重命名字段。
- 从MongoDB 3.2开始,$project阶段支持使用方括号[]直接创建新的数组字段。如果数组规范包含文档中不存在的字段,则该操作会将空值替换为该字段的值。
- 在版本3.4中更改-如果$project 是一个空文档,MongoDB 3.4和更高版本会产生一个错误。
- 投影或添加/重置嵌入文档中的字段时,可以使用点符号
示例
以下$project阶段的输出文档中只包含_id,city和state字段
db.zips.aggregate([
{
"$project": {
"\_id": 1,
"city": 1,
"state": 1
}
}
]).pretty();
_id字段默认包含在内。要从$ project阶段的输出文档中排除_id字段,请在project文档中将_id字段设置为0来指定排除_id字段。
db.zips.aggregate([
{
"$project": {
"\_id": 0,
"city": 1,
"state": 1
}
}
]).pretty();
以下$ project阶段从输出中排除loc字段
db.zips.aggregate([
{
"$project": {
"loc": 0
}
}
]).pretty();
可以在聚合表达式中使用变量REMOVE来有条件地禁止一个字段,
db.zips.aggregate([
{
"$project": {
"\_id": 1,
"city": 1,
"state": 1,
"pop": 1,
"loc": {
"$cond": {
"if": {
"$gt": [
"$pop",
1000
]
},
"then": "$$REMOVE",
"else": "$loc"
}
}
}
}
]).pretty();
我们还可以改变数据,将人数大于1000的城市坐标重置为0
db.zips.aggregate([
{
"$project": {
"\_id": 1,
"city": 1,
"state": 1,
"pop": 1,
"loc": {
"$cond": {
"if": {
"$gt": [
"$pop",
1000
]
},
"then": [
0,
0
],
"else": "$loc"
}
}
}
}
]).pretty();
新增字段列
db.zips.aggregate([
{
"$project": {
"\_id": 1,
"city": 1,
"state": 1,
"pop": 1,
"desc": {
"$cond": {
"if": {
"$gt": [
"$pop",
1000
]
},
"then": "人数过多",
"else": "人数过少"
}
},
"loc": {
"$cond": {
"if": {
"$gt": [
"$pop",
1000
]
},
"then": [
0,
0
],
"else": "$loc"
}
}
}
}
]).pretty();
$limit
限制传递到管道中下一阶段的文档数
语法
{ $limit: <positive integer> }
示例,此操作仅返回管道传递给它的前5个文档。 $limit对其传递的文档内容没有影响。
db.zips.aggregate({
"$limit": 5
});
注意
当$sort在管道中的$limit之前立即出现时,$sort操作只会在过程中维持前n个结果,其中n是指定的限制,而MongoDB只需要将n个项存储在内存中。当allowDiskUse为true并且n个项目超过聚合内存限制时,此优化仍然适用。
$skip
跳过进入stage的指定数量的文档,并将其余文档传递到管道中的下一个阶段
语法
{ $skip: <positive integer> }
示例,此操作将跳过管道传递给它的前5个文档, $skip对沿着管道传递的文档的内容没有影响。
db.zips.aggregate({
"$skip": 5
});
$sort
对所有输入文档进行排序,并按排序顺序将它们返回到管道。
语法
{ $sort: { <field1>: <sort order>, <field2>: <sort order> ... } }
$sort指定要排序的字段和相应的排序顺序的文档。
<sort order>可以具有以下值之一:
- 1指定升序。
- -1指定降序。
- {$meta:“textScore”}按照降序排列计算出的textScore元数据。
示例
要对字段进行排序,请将排序顺序设置为1或-1,以分别指定升序或降序排序,如下例所示:
db.zips.aggregate([
{
"$sort": {
"pop": -1,
"city": 1
}
}
])
$sortByCount
根据指定表达式的值对传入文档分组,然后计算每个不同组中文档的数量。每个输出文档都包含两个字段:包含不同分组值的_id字段和包含属于该分组或类别的文档数的计数字段,文件按降序排列。
语法
{ $sortByCount: <expression> }
3 使用示例
下面举了一些常用的mongo聚合例子和mysql对比,假设有一条如下的数据库记录(表名:zips)作为例子:
3.1 统计所有数据
SQL的语法格式如下
select count(1) from zips;
mongoDB的语法格式
db.zips.aggregate([
{
"$group": {
"\_id": null,
"count": {
"$sum": 1
}
}
}
])
3.2 对所有城市人数求合
SQL的语法格式如下
select sum(pop) AS tota from zips;
mongoDB的语法格式
db.zips.aggregate([
{
"$group": {
"\_id": null,
"total": {
"$sum": "$pop"
}
}
}
])
3.3 对城市缩写相同的城市人数求合
SQL的语法格式如下
select state,sum(pop) AS tota from zips group by state;
mongoDB的语法格式
db.zips.aggregate([
{
"$group": {
"\_id": "$state",
"total": {
"$sum": "$pop"
}
}
}
])
3.4 state重复的城市个数
SQL的语法格式如下
select state,count(1) AS total from zips group by state;
mongoDB的语法格式
db.zips.aggregate([
{
"$group": {
"\_id": "$state",
"total": {
"$sum": 1
}
}
}
])
3.5 state重复个数大于100的城市
SQL的语法格式如下
select state,count(1) AS total from zips group by state having count(1)>100;
mongoDB的语法格式
db.zips.aggregate([
{
"$group": {
"\_id": "$state",
"total": {
"$sum": 1
}
}
},
{
"$match": {
"total": {
"$gt": 100
}
}
}
])
4 MapReduce
MongoDB的聚合操作主要是对数据的批量处理,一般都是将记录按条件分组之后进行一系列求最大值,最小值,平均值的简单操作,也可以对记录进行数据统计,数据挖掘的复杂操作,聚合操作的输入是集中的文档,输出可以是一个文档也可以是多个文档。
Pipeline查询速度快于MapReduce,但是MapReduce的强大之处在于能够在多台Server上并行执行复杂的聚合逻辑,MongoDB不允许Pipeline的单个聚合操作占用过多的系统内存,如果一个聚合操作消耗20%以上的内存,那么MongoDB直接停止操作,并向客户端输出错误消息。
4.1 什么是MapReduce
MapReduce是一种计算模型,简单的说就是将大批量的工作(数据)分解(MAP)执行,然后再将结果合并成最终结果(REDUCE)
mapreduce使用javascript语法编写,其内部也是基于javascript V8引擎解析并执行,javascript语言的灵活性也让mapreduce可以处理更加复杂的业务场景;当然这相对于aggreation pipleine而言,意味着需要书写大量的脚本,而且调试也将更加困难。(调试可以基于javascript调试,成功后再嵌入到mongodb中)
4.1.1 执行阶段
mapreduce有2个阶段:map和reduce;
- mapper处理每个document,然后emits一个或者多个objects,object为key-value对;
- reducer将map操作的结果进行联合操作(combine)。此外mapreduce还可以有一个finalize阶段,这是可选的,它可以调整reducer计算的结果。在进行mapreduce之前,mongodb支持使用query来筛选文档,也支持sort排序和limit。
4.1.2 语法
MapReduce 的基本语法如下:
db.collection.mapReduce(
function() {
this -- document
emit(key,value);
}, //map 函数
function(key,values) {
key,values
return reduceFunction
}, //reduce 函数
{
out: collection,
query: document,
sort: document,
limit: number,
finalize: <function>,
scope: <document>,
jsMode: <boolean>,
verbose: <boolean>
}
)
使用 MapReduce 要实现两个函数 Map 函数和 Reduce 函数,Map 函数调用 emit(key, value), 遍历 collection 中所有的记录, 将 key 与 value 传递给 Reduce 函数进行处理。
参数说明
- map:是JavaScript 函数,负责将每一个输入文档转换为零或多个文档,通过key进行分组,生成键值对序列,作为 reduce 函数参数
- reduce:是JavaScript 函数,对map操作的输出做合并的化简的操作(将key-values变成key-value,也就是把values数组变成一个单一的值value)
- out:统计结果存放集合 (不指定则使用临时集合,在客户端断开后自动删除)。
- query: 一个筛选条件,只有满足条件的文档才会调用map函数。(query。limit,sort可以随意组合)
- sort: 和limit结合的sort排序参数(也是在发往map函数前给文档排序),可以优化分组机制
- limit: 发往map函数的文档数量的上限(要是没有limit,单独使用sort的用处不大)
- finalize:可以对reduce输出结果再一次修改,跟group的finalize一样,不过MapReduce没有group的4MB文档的输出限制
- scope:向map、reduce、finalize导入外部变量
- verbose:是否包括结果信息中的时间信息,默认为fasle
4.1.3 使用示例
按照state分组统计
样例SQL