Datawhale X 魔搭 AI夏令营 Task02

16 阅读3分钟

Why[Task1]代码

1. 安装和卸载依赖包

首先,我们将使用 !pip 命令来安装和卸载所需的 Python 包。

# 安装依赖包
!pip install simple-aesthetics-predictor
!pip install -v -e data-juicer
!pip install peft lightning pandas torchvision
!pip install -e DiffSynth-Studio

# 卸载 pytorch-lightning
!pip uninstall pytorch-lightning -y

2. 加载数据集

接下来,我们将使用 ModelScope 的 MsDataset 类加载数据集。

# 加载数据集
from modelscope.msdatasets import MsDataset

ds = MsDataset.load(
    'AI-ModelScope/lowres_anime',
    subset_name='default',
    split='train',
    cache_dir="/mnt/workspace/kolors/data"
)

3. 数据预处理

现在我们将对数据集中的图像进行预处理,并创建元数据文件。

# 数据预处理
import json, os
from data_juicer.utils.mm_utils import SpecialTokens
from tqdm import tqdm

os.makedirs("./data/lora_dataset/train", exist_ok=True)
os.makedirs("./data/data-juicer/input", exist_ok=True)

with open("./data/data-juicer/input/metadata.jsonl", "w") as f:
    for data_id, data in enumerate(tqdm(ds)):
        image = data["image"].convert("RGB")
        image.save(f"/mnt/workspace/kolors/data/lora_dataset/train/{data_id}.jpg")
        metadata = {"text": "二次元", "image": [f"/mnt/workspace/kolors/data/lora_dataset/train/{data_id}.jpg"]}
        f.write(json.dumps(metadata))
        f.write("\n")

4. 使用 Data-Juicer 进行数据处理

接着,我们定义 Data-Juicer 的配置文件,并使用它来过滤和处理数据。

# 定义 Data-Juicer 的配置
data_juicer_config = """
# 全局参数
project_name: 'data-process'
dataset_path: './data/data-juicer/input/metadata.jsonl'
np: 4

text_keys: 'text'
image_key: 'image'
image_special_token: '<__dj__image>'

export_path: './data/data-juicer/output/result.jsonl'

# 过滤规则
process:
    - image_shape_filter:
        min_width: 1024
        min_height: 1024
        any_or_all: any
    - image_aspect_ratio_filter:
        min_ratio: 0.5
        max_ratio: 2.0
        any_or_all: any
"""

# 保存配置文件
with open("data/data-juicer/data_juicer_config.yaml", "w") as file:
    file.write(data_juicer_config.strip())

# 使用 Data-Juicer 进行数据处理
!dj-process --config data/data-juicer/data_juicer_config.yaml

5. 数据整理与训练

在这一步,我们将处理过的数据转换为 Pandas DataFrame,并保存为 CSV 文件,同时保存图片到指定目录。之后下载模型并进行 LoRA 微调训练。

# 读取处理过的数据并保存为 CSV 文件
import pandas as pd
import os, json
from PIL import Image
from tqdm import tqdm

texts, file_names = [], []

os.makedirs("./data/lora_dataset_processed/train", exist_ok=True)

with open("./data/data-juicer/output/result.jsonl", "r") as file:
    for data_id, data in enumerate(tqdm(file.readlines())):
        data = json.loads(data)
        text = data["text"]
        texts.append(text)
        image = Image.open(data["image"][0])
        image_path = f"./data/lora_dataset_processed/train/{data_id}.jpg"
        image.save(image_path)
        file_names.append(f"{data_id}.jpg")

data_frame = pd.DataFrame()
data_frame["file_name"] = file_names
data_frame["text"] = texts
data_frame.to_csv("./data/lora_dataset_processed/train/metadata.csv", index=False, encoding="utf-8-sig")

# 下载模型
from diffsynth import download_models
download_models(["Kolors", "SDXL-vae-fp16-fix"])

# 执行 LoRA 微调训练
import os
cmd = """
python DiffSynth-Studio/examples/train/kolors/train_kolors_lora.py \\
  --pretrained_unet_path models/kolors/Kolors/unet/diffusion_pytorch_model.safetensors \\
  --pretrained_text_encoder_path models/kolors/Kolors/text_encoder \\
  --pretrained_fp16_vae_path models/sdxl-vae-fp16-fix/diffusion_pytorch_model.safetensors \\
  --lora_rank 16 \\
  --lora_alpha 4.0 \\
  --dataset_path data/lora_dataset_processed \\
  --output_path ./models \\
  --max_epochs 1 \\
  --center_crop \\
  --use_gradient_checkpointing \\
  --precision "16-mixed"
""".strip()

os.system(cmd)

6. 图像生成

在这一部分,我们将加载 LoRA 微调后的模型,并生成图像。

# 加载 LoRA 微调后的模型
from diffsynth import ModelManager, SDXLImagePipeline
from peft import LoraConfig, inject_adapter_in_model
import torch

def load_lora(model, lora_rank, lora_alpha, lora_path):
    lora_config = LoraConfig(
        r=lora_rank,
        lora_alpha=lora_alpha,
        init_lora_weights="gaussian",
        target_modules=["to_q", "to_k", "to_v", "to_out"],
    )
    model = inject_adapter_in_model(lora_config, model)
    state_dict = torch.load(lora_path, map_location="cpu")
    model.load_state_dict(state_dict, strict=False)
    return model

model_manager = ModelManager(
    torch_dtype=torch.float16,
    device="cuda",
    file_path_list=[
        "models/kolors/Kolors/text_encoder",
        "models/kolors/Kolors/unet/diffusion_pytorch_model.safetensors",
        "models/kolors/Kolors/vae/diffusion_pytorch_model.safetensors"
    ]
)

pipe = SDXLImagePipeline.from_model_manager(model_manager)
pipe.unet = load_lora(
    pipe.unet,
    lora_rank=16,
    lora_alpha=2.0,
    lora_path="models/lightning_logs/version_0/checkpoints/epoch=0-step=500.ckpt"
)

# 图像生成
torch.manual_seed(0)
image = pipe(
    prompt="二次元,一个紫色短发小女孩,在家中沙发上坐着,双手托着腮,很无聊,全身,粉色连衣裙",
    negative_prompt="丑陋、变形、嘈杂、模糊、低对比度",
    cfg_scale=4,
    num_inference_steps=50,
    height=1024, width=1024
)
image.save("1.jpg")

7. 合并图像

最后,我们将生成的多个图像合并成一个大图像,并调整大小。

# 图像合并
import numpy as np
from PIL import Image

images = [np.array(Image.open(f"{i}.jpg")) for i in range(1, 9)]
image = np.concatenate([
    np.concatenate(images[0:2], axis=1),
    np.concatenate(images[2:4], axis=1),
    np.concatenate(images[4:6], axis=1),
    np.concatenate(images[6:8], axis=1),
], axis=0)
image = Image.fromarray(image).resize((1024, 2048))

# 显示图像
image