总结
demo
对于LightGBM解决回归问题,我们用Kaggle比赛中回归问题:House Prices: Advanced Regression Techniques,
地址:[https://www.kaggle.com/c/house-prices-advanced-regression-techniques](https://link.zhihu.com/?target=https%3A//www.kaggle.com/c/house-prices-advanced-regression-techniques) 来进行实例讲解。
该房价预测的训练数据集中一共有81列,第一列是Id,最后一列是label,中间79列是特征。
这79列特征中,有43列是类别型变量,33列是整数变量,3列是浮点型变量。
训练数据集中存在缺失值missing value
import pandas as pd
import lightgbm as lgb
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_absolute_error
from sklearn.preprocessing import Imputer
data = pd.read_csv('./dataset/train.csv')
y = data.SalePrice
X = data.drop(['SalePrice'], axis=1).select_dtypes(exclude=['object'])
train_X, test_X, train_y, test_y = train_test_split(X.values, y.values, test_size=0.25)
my_imputer = Imputer()
train_X = my_imputer.fit_transform(train_X)
test_X = my_imputer.transform(test_X)
lgb_train = lgb.Dataset(train_X, train_y)
lgb_eval = lgb.Dataset(test_X, test_y, reference=lgb_train)
params = {
'task': 'train',
'boosting_type': 'gbdt',
'objective': 'regression',
'metric': {'l2', 'auc'},
'num_leaves': 31,
'learning_rate': 0.05,
'feature_fraction': 0.9,
'bagging_fraction': 0.8,
'bagging_freq': 5,
'verbose': 1
}
my_model = lgb.train(params, lgb_train, num_boost_round=20, valid_sets=lgb_eval, early_stopping_rounds=5)
predictions = my_model.predict(test_X, num_iteration=my_model.best_iteration)
print("Mean Absolute Error : " + str(mean_absolute_error(predictions, test_y)))
<2>基于Scikit-learn接口的回归
from lightgbm.sklearn import LGBMRegressor
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_absolute_error
from sklearn.preprocessing import Imputer
import pandas as pd
data = pd.read_csv('./dataset/train.csv')
y = data.SalePrice
X = data.drop(['SalePrice'], axis=1).select_dtypes(exclude=['object'])
train_X, test_X, train_y, test_y = train_test_split(X.values, y.values, test_size=0.25)
my_imputer = Imputer()
train_X = my_imputer.fit_transform(train_X)
test_X = my_imputer.transform(test_X)
my_model = LGBMRegressor(objective='regression',
num_leaves=31,
learning_rate=0.05,
n_estimators=20,
verbosity=2)
my_model.fit(train_X, train_y, verbose=False)
predictions = my_model.predict(test_X)
print("Mean Absolute Error : " + str(mean_absolute_error(predictions, test_y)))
3/LightGBM调参
在上一部分中,LightGBM模型的参数有一部分进行了简单的设置,但大都使用了模型的默认参数,但默认参数并不是最好的。要想让LightGBM表现的更好,需要对LightGBM模型进行参数微调。下图展示的是回归模型需要调节的参数,分类模型需要调节的参数与此类似。

5/场景之银行预测贷款客户是否会违约











