HTTP
超文本传输协议(HTTP) 是一个用于传输超媒体文档(例如 HTML)的应用层协议。它是为 Web 浏览器与 Web 服务器之间的通信而设计的,但也可以用于其他目的。HTTP 遵循经典的客户端-服务端模型,客户端打开一个连接以发出请求,然后等待直到收到服务器端响应。HTTP 是无状态协议,这意味着服务器不会在两个请求之间保留任何数据(状态)。
HTTP有多个版本,目前广泛使用的是HTTP1.1版本。
HTTP是一个基于TCP/IP通信协议来传递数据的协议,传输的数据类型为HTML 文件,、图片文件, 查询结果等。
HTTP协议一般用于B/S架构,浏览器作为HTTP客户端通过URL向HTTP服务端即WEB服务器发送所有请求。
HTTP协议特点
HTTP 是简单的
虽然下一代HTTP/2协议将HTTP消息封装到了帧(frames)中,HTTP大体上还是被设计得简单易读。HTTP报文能够被人读懂,还允许简单测试,降低了门槛,对新人很友好。
HTTP 是可扩展的
在 HTTP/1.0 中出现的 HTTP headers 让协议扩展变得非常容易。只要服务端和客户端就新 headers 达成语义一致,新功能就可以被轻松加入进来。
HTTP 是无状态,有会话的
HTTP是无状态的:在同一个连接中,两个执行成功的请求之间是没有关系的。这就带来了一个问题,用户没有办法在同一个网站中进行连续的交互,比如在一个电商网站里,用户把某个商品加入到购物车,切换一个页面后再次添加了商品,这两次添加商品的请求之间没有关联,浏览器无法知道用户最终选择了哪些商品。而使用HTTP的头部扩展,HTTP Cookies就可以解决这个问题。把Cookies添加到头部中,创建一个会话让每次请求都能共享相同的上下文信息,达成相同的状态。
注意,HTTP本质是无状态的,使用Cookies可以创建有状态的会话。
HTTP 和连接
一个连接是由传输层来控制的,这从根本上不属于HTTP的范围。HTTP并不需要其底层的传输层协议是面向连接的,只需要它是可靠的,或不丢失消息的(至少返回错误)。在互联网中,有两个最常用的传输层协议:TCP是可靠的,而UDP不是。因此,HTTP依赖于面向连接的TCP进行消息传递,但连接并不是必须的。
在客户端(通常指浏览器)与服务器能够交互(客户端发起请求,服务器返回响应)之前,必须在这两者间建立一个 TCP 链接,打开一个 TCP 连接需要多次往返交换消息(因此耗时)。
HTTP/1.0 默认为每一对 HTTP 请求/响应都打开一个单独的 TCP 连接。当需要连续发起多个请求时,这种模式比多个请求共享同一个 TCP 链接更低效。
为了减轻这些缺陷,HTTP/1.1引入了流水线(被证明难以实现)和持久连接的概念:底层的TCP连接可以通过Connection头部来被部分控制。HTTP/2则发展得更远,通过在一个连接复用消息的方式来让这个连接始终保持为暖连接。
为了更好的适合HTTP,设计一种更好传输协议的进程一直在进行。Google就研发了一种以UDP为基础,能提供更可靠更高效的传输协议QUIC(http3.0)。
HTTP默认端口号
HTTP的默认端口号为80, HTTPS的默认端口号为443
HTTP的一些不足
- 请求信息明文传输,容易被窃听截取
- 没有验证对方身份,存在冒充危险
- 数据的完整性未校验,容易被篡改
所以呢,才有了HTTPS的出现来弥补这些不足。
HTTPS
HTTPS协议(Hypertext Transfer Protocol over Secure Socket Layer)简单讲是HTTP的安全版,在HTTP协议的基础上加入SSL层(HTTP+SSL) 。 SSL(Secure Sockets Layer 安全套接层)主要用于Web的安全传输协议,在传输层对网络连接进行加密,保障在Internet上数据传输的安全。
SSL(Secure Socket Layer,安全套接字层):1994年为 Netscape 所研发,SSL 协议位于 TCP/IP 协议与各种应用层协议之间的会话层,为数据通讯提供安全支持。
TLS(Transport Layer Security,传输层安全):其前身是 SSL,它最初的几个版本(SSL 1.0、SSL 2.0、SSL 3.0)由网景公司开发,1999年从 3.1 开始被 IETF 标准化并改名,发展至今已经有 TLS 1.0、TLS 1.1、TLS 1.2 三个版本。SSL3.0和TLS1.0由于存在安全漏洞,已经很少被使用到。TLS 1.3 改动会比较大,目前还在草案阶段,目前使用最广泛的是TLS 1.1、TLS 1.2。
TLS 的作用是在可靠的 TCP 协议上构建安全的传输通道,其本身是不提供可靠性保障的,我们还是需要下层可靠的传输层协议。在通信双方建立可靠的 TCP 连接之后,我们就需要通过 TLS 握手交换双方的密钥了,在这里我们将介绍 TLS 1.2 的连接建立过程:
- 客户端向服务端发送 Client Hello 消息,其中携带客户端支持的协议版本、加密算法、压缩算法以及客户端生成的随机数;
- 服务端收到客户端支持的协议版本、加密算法等信息后;
- 向客户端发送 Server Hello 消息,并携带选择特定的协议版本、加密方法、会话 ID 以及服务端生成的随机数;
- 向客户端发送 Certificate 消息,即服务端的证书链,其中包含证书支持的域名、发行方和有效期等信息;
- 向客户端发送 Server Key Exchange 消息,传递公钥以及签名等信息;
- 向客户端发送可选的消息 CertificateRequest,验证客户端的证书;
- 向客户端发送 Server Hello Done 消息,通知服务端已经发送了全部的相关信息;
- 客户端收到服务端的协议版本、加密方法、会话 ID 以及证书等信息后,验证服务端的证书;
- 向服务端发送 Client Key Exchange 消息,包含使用服务端公钥加密后的随机字符串,即预主密钥(Pre Master Secret);
- 向服务端发送 Change Cipher Spec 消息,通知服务端后面的数据段会加密传输;
- 向服务端发送 Finished 消息,其中包含加密后的握手信息;
- 服务端收到 Change Cipher Spec 和 Finished 消息后;
- 向客户端发送 Change Cipher Spec 消息,通知客户端后面的数据段会加密传输;
- 向客户端发送 Finished 消息,验证客户端的 Finished 消息并完成 TLS 握手;
对称密钥建立过程
如何验证证书合法性
(1)首先浏览器校验证书的网站域名是否与证书颁发的域名一致,再检查SSL证书中的证书吊销列表,校验证书是否在有效期内
(2)浏览器开始查找操作系统中已内置的受信任的证书发布机构CA,与服务器发来的证书中的颁发者CA比对,用于校验证书是否为合法机构颁发
(3)如果找不到,浏览器就会报错,说明服务器发来的证书是不可信任的。
(4)如果找到,那么浏览器就会从操作系统中取出颁发者CA 的公钥(多数浏览器开发商发布
版本时,会事先在内部植入常用认证机关的公开密钥),然后对服务器发来的证书里面的签名进行解密
(5)浏览器使用相同的hash算法计算出服务器发来的证书的hash值,将这个计算的hash值与证书中签名做对比
(6)对比结果一致,则证明服务器发来的证书合法,没有被冒充
HTTPS优势
- 内容加密建立一个信息安全通道,来保证数据传输的安全
- 身份认证确认网站的真实性
- 数据完整性防止内容被第三方冒充或者篡改
HTTPS劣势
- HTTPS协议多次握手,导致页面的加载时间延长
- HTTPS连接缓存不如HTTP高效,会增加数据开销和功耗
- 需要专业机构颁发CA证书,一般都是收费的,功能越强大的证书费用越高
- SSL涉及到的加密算法会消耗一部分 CPU 资源