Elementary Differential Equations

39 阅读2分钟

Homework Set 2 (Due Aug. ****3rd, ****2024)

The references used to prepare this problem set are “Elementary Differential Equations with Boundary    Value Problems” (William Trench) and “Introduction to Differential Equations” (Michael Taylor). In the following problems, y'  = dt/dy,  y''  = dt2/d2y, and y'''  = dt3/d3y.

●   What does it mean for a pair of functions {f1 (t),  f2 (t)} to be linearly independent? How do we generalize this definition to a set of more than two functions, say {f1 (t),  f2 (t), f3 (t)}?

o    Show that for constants a and b such that b  ≠  0, the functions eat  cos(bt) and eat sin(bt) are linearly independent.

o   Explain why the functions t|t| and t2  are linearly independent on ( −   ∞, ∞). Can we specify a certain interval for t on which t|t| and t2  are linearly dependent?

■   Hint: Graph these two functions.

●   Consider the constant coefficient third order differential equation

y'''  + a2y''  + a1y'  + a0y  =  0, where a2, a1, a0  are constants. Suppose the initial conditions are y'' (t0)  = C2,  y' (t0)  = C1,  y(t0)  = C0. Find an equivalent first order system and then infer that there are at most three linearly independent solutions.

o   Hint: Notice the initial conditions and draw an analogy to the second order case.

●   Regarding the previous problem with equation y'''  + a2y''  + a1y'  + a0y  =  0 having initial

conditions y'' (t0)  = C2,  y' (t0)  = C1,  y(t0)  = C0, show that the eigenvalues for the matrix in the first-order system are obtained by solving λ3   + a2λ2   + a1λ  + a0λ  =  0.

●   Consider the equation t2y''  −  6ty'  +  12y  =  0 with initial conditions y' (t0)  = C1  and y(t0)  = C0.

o   Hypothesizing that there are solutions of the form y(t)  = tr, where r is a constant to be determined, find two solutions and show that they are linearly independent (see the first bullet point).

o    Suppose t0  ≠  0. Construct infinitely many solutions when the interval f代写 Elementary Differential Equations or t includes zero. If the interval is of the form (a, b) where either a  >  0 or b  <  0, explain why we obtain a unique solution.

o   In contrast to the constant coefficient case, say y''  −  2y'  −  3y  =  0 with initial

conditions y' (t0)  =  β and y(t0)  =  α like in a lecture example, what might suggest non-uniqueness of solutions in this problem when the interval includes zero?

■   Hint: Write the given second order equation as a first order system to bring it to a

form which looks like “dt/dy =  f(t, y)”  and then think about the “rule-of-thumb” we mentioned regarding ∂y/∂f.

●   Use the method of variation ofparameters to find a solution to each of the following:

。 y'''  +  y  = et  with initial conditions y'' (t0)  =  C, y' (t0)  =  b, and y(t0)  =  a

。 y''  +  y  =  tan t with initial conditions y' (1)  =  2 and y(1)  =  4

●   Draw the phase portraits for each of the following (show all your work):

。 y''  +  2y'  +  y  =  0 

。 y''  +  7y'  +  6y  =  0

。 y''  −  2y'  +  2y  =  0

WX:codinghelp