1 不同路径
1.1 题目链接
1.2 题目描述
一个机器人位于一个 m x n **网格的左上角 (起始点在下图中标记为 “Start” )。
机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。
问总共有多少条不同的路径?
示例 1:
输入: m = 3, n = 7
输出: 28
示例 2:
输入: m = 3, n = 2
输出: 3
解释:
从左上角开始,总共有 3 条路径可以到达右下角。
1. 向右 -> 向下 -> 向下
2. 向下 -> 向下 -> 向右
3. 向下 -> 向右 -> 向下
示例 3:
输入: m = 7, n = 3
输出: 28
示例 4:
输入: m = 3, n = 3
输出: 6
提示:
1 <= m, n <= 100- 题目数据保证答案小于等于
2 * 109
1.3 解法
算法思路:
-
状态表⽰:
对于这种「路径类」的问题,我们的状态表⽰⼀般有两种形式:
- i. 从 [i, j] 位置出发,巴拉巴拉;
- ii. 从起始位置出发,到达 [i, j] 位置,巴拉巴拉。
这⾥选择第⼆种定义状态表⽰的⽅式:
dp[i][j] 表⽰:⾛到 [i, j] 位置处,⼀共有多少种⽅式.
-
状态转移⽅程:
简单分析⼀下。如果 dp[i][j] 表⽰到达 [i, j] 位置的⽅法数,那么到达 [i, j] 位置之前的⼀⼩步,有两种情况:
- i. 从 [i, j] 位置的上⽅( [i - 1, j] 的位置)向下⾛⼀步,转移到 [i, j] 位置;
- ii. 从 [i, j] 位置的左⽅( [i, j - 1] 的位置)向右⾛⼀步,转移到 [i, j] 位置。
由于我们要求的是有多少种⽅法,因此状态转移⽅程就呼之欲出了: dp[i][j] = dp[i - 1][j] + dp[i][j - 1] 。
-
初始化:
可以在最前⾯加上⼀个「辅助结点」,帮助我们初始化。使⽤这种技巧要注意两个点:
- i. 辅助结点⾥⾯的值要「保证后续填表是正确的」;
- ii. 「下标的映射关系」。 在本题中,「添加⼀⾏」,并且「添加⼀列」后,只需将 dp[0][1] 的位置初始化为 1 即可。
-
填表顺序:
根据「状态转移⽅程」的推导来看,填表的顺序就是「从上往下」填每⼀⾏,在填写每⼀⾏的时候「从左往右」。
-
返回值:
根据「状态表⽰」,我们要返回 dp[m][n] 的值。
1.4 C++算法代码:
class Solution {
public:
int uniquePaths(int m, int n) {
vector<vector<int>> dp(m + 1, vector<int>(n + 1));
dp[0][1] = 1;
for(int i = 1; i <= m; i++) // 从上往下
for(int j = 1; j <= n; j++) // 从左往右
dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
return dp[m][n];
}
};
2 不同路径 II
2.1 题目链接
2.2 题目描述
一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。
机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish”)。
现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径?
网格中的障碍物和空位置分别用 1 和 0 来表示。
示例 1:
输入: obstacleGrid = [[0,0,0],[0,1,0],[0,0,0]]
输出: 2
解释: 3x3 网格的正中间有一个障碍物。
从左上角到右下角一共有 2 条不同的路径:
1. 向右 -> 向右 -> 向下 -> 向下
2. 向下 -> 向下 -> 向右 -> 向右
示例 2:
输入: obstacleGrid = [[0,1],[0,0]]
输出: 1
提示:
m == obstacleGrid.lengthn == obstacleGrid[i].length1 <= m, n <= 100obstacleGrid[i][j]为0或1
2.3 解法(动态规划):
算法思路:
本题为不同路径的变型,只不过有些地⽅有「障碍物」,只要在「状态转移」上稍加修改就可解决。
-
状态表⽰:
对于这种「路径类」的问题,我们的状态表⽰⼀般有两种形式:
- i. 从 [i, j] 位置出发,巴拉巴拉;
- ii. 从起始位置出发,到达 [i, j] 位置,巴拉巴拉。
这⾥选择第⼆种定义状态表⽰的⽅式:
dp[i][j] 表⽰:⾛到 [i, j] 位置处,⼀共有多少种⽅式。
-
状态转移:
简单分析⼀下。如果 dp[i][j] 表⽰到达 [i, j] 位置的⽅法数,那么到达 [i, j] 位置之前的⼀⼩步,有两种情况:
- i. 从 [i, j] 位置的上⽅( [i - 1, j] 的位置)向下⾛⼀步,转移到 [i, j] 位置;
- ii. 从 [i, j] 位置的左⽅( [i, j - 1] 的位置)向右⾛⼀步,转移到 [i, j] 位置。
但是, [i - 1, j] 与 [i, j - 1] 位置都是可能有障碍的,此时从上⾯或者左边是不可能到达 [i, j] 位置的,也就是说,此时的⽅法数应该是 0。
由此我们可以得出⼀个结论,只要这个位置上「有障碍物」,那么我们就不需要计算这个位置上的值,直接让它等于 0 即可。
-
初始化:
可以在最前⾯加上⼀个「辅助结点」,帮助我们初始化。使⽤这种技巧要注意两个点:
- i. 辅助结点⾥⾯的值要「保证后续填表是正确的」;
- ii. 「下标的映射关系」。
在本题中,添加⼀⾏,并且添加⼀列后,只需将 dp[1][0] 的位置初始化为 1 即可。
-
填表顺序:
根据「状态转移」的推导,填表的顺序就是「从上往下」填每⼀⾏,每⼀⾏「从左往右」。
-
返回值:
根据「状态表⽰」,我们要返回的结果是 dp[m][n] 。
2.4 C++算法代码:
class Solution {
public:
int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
int m = obstacleGrid.size(), n =obstacleGrid[0].size();
vector<vector<int>> dp(m + 1, vector<int>(n + 1));
dp[1][0] = 1;
for(int i = 1;i <= m; i++)
for(int j = 1; j <= n; j++)
if(obstacleGrid[i - 1][j - 1] == 0)
dp[i][j] = dp[i][j - 1] + dp[i - 1][j];
return dp[m][n];
}
};
3 珠宝的最高价值
3.1 题目链接
3.2 题目描述
现有一个记作二维矩阵 frame 的珠宝架,其中 frame[i][j] 为该位置珠宝的价值。拿取珠宝的规则为:
- 只能从架子的左上角开始拿珠宝
- 每次可以移动到右侧或下侧的相邻位置
- 到达珠宝架子的右下角时,停止拿取
注意:珠宝的价值都是大于 0 的。除非这个架子上没有任何珠宝,比如 frame = [[0]]。
示例 1:
输入: frame = [[1,3,1],[1,5,1],[4,2,1]]
输出: 12
解释: 路径 1→3→5→2→1 可以拿到最高价值的珠宝
提示:
0 < frame.length <= 2000 < frame[0].length <= 200
3.3 解法(动态规划):
算法思路:
-
状态表⽰:
对于这种「路径类」的问题,我们的状态表⽰⼀般有两种形式:
- i. 从 [i, j] 位置出发,巴拉巴拉;
- ii. 从起始位置出发,到达 [i, j] 位置,巴拉巴拉。
这⾥选择第⼆种定义状态表⽰的⽅式:
dp[i][j] 表⽰:⾛到 [i, j] 位置处,此时的最⼤价值。
-
状态转移⽅程:
对于 dp[i][j] ,我们发现想要到达 [i, j] 位置,有两种⽅式:
- i. 从 [i, j] 位置的上⽅ [i - 1, j] 位置,向下⾛⼀步,此时到达 [i, j] 位置能拿到的礼物价值为 dp[i - 1][j] + grid[i][j] ;
- ii. 从 [i, j] 位置的左边 [i, j - 1] 位置,向右⾛⼀步,此时到达 [i, j] 位置能拿到的礼物价值为 dp[i][j - 1] + grid[i][j]
我们要的是最⼤值,因此状态转移⽅程为:
- dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]) + grid[i][j] 。
-
初始化:
可以在最前⾯加上⼀个「辅助结点」,帮助我们初始化。使⽤这种技巧要注意两个点:
- i. 辅助结点⾥⾯的值要「保证后续填表是正确的」;
- ii. 「下标的映射关系」。
在本题中,「添加⼀⾏」,并且「添加⼀列」后,所有的值都为 0 即可。
-
填表顺序:
根据「状态转移⽅程」,填表的顺序是「从上往下填写每⼀⾏」,「每⼀⾏从左往右」。
-
返回值:
根据「状态表⽰」,我们应该返回 dp[m][n] 的值。
3.4 C++算法代码:
class Solution {
public:
int jewelleryValue(vector<vector<int>>& frame) {
int m = frame.size(), n =frame[0].size();
vector<vector<int>> dp(m +1,vector<int> (n +1));
for(int i = 1; i <= m; i++)
for(int j = 1; j <=n; j++)
dp[i][j] = max(dp[i][j - 1], dp[i - 1][j]) + frame[i - 1][j - 1];
return dp[m][n];
}
};
4 下降路径最小和
4.1 题目链接
4.2 题目描述
给你一个 n x n 的 方形 整数数组 matrix ,请你找出并返回通过 matrix 的下降路径 **的 ****最小和 。
下降路径 可以从第一行中的任何元素开始,并从每一行中选择一个元素。在下一行选择的元素和当前行所选元素最多相隔一列(即位于正下方或者沿对角线向左或者向右的第一个元素)。具体来说,位置 (row, col) 的下一个元素应当是 (row + 1, col - 1)、(row + 1, col) 或者 (row + 1, col + 1) 。
示例 1:
输入: matrix = [[2,1,3],[6,5,4],[7,8,9]]
输出: 13
解释: 如图所示,为和最小的两条下降路径
示例 2:
输入: matrix = [[-19,57],[-40,-5]]
输出: -59
解释: 如图所示,为和最小的下降路径
提示:
n == matrix.length == matrix[i].length1 <= n <= 100-100 <= matrix[i][j] <= 100
4.3 解法(动态规划):
算法思路:
关于这⼀类题,由于我们做过类似的,因此「状态表⽰」以及「状态转移」是⽐较容易分析出来的。
⽐较难的地⽅可能就是对于「边界条件」的处理。
-
状态表⽰:
对于这种「路径类」的问题,我们的状态表⽰⼀般有两种形式:
- i. 从 [i, j] 位置出发,到达⽬标位置有多少种⽅式;
- ii. 从起始位置出发,到达 [i, j] 位置,⼀共有多少种⽅式
这⾥选择第⼆种定义状态表⽰的⽅式:
dp[i][j] 表⽰:到达 [i, j] 位置时,所有下降路径中的最⼩和。
-
状态转移⽅程:
对于普遍位置 [i, j] ,根据题意得,到达 [i, j] 位置可能有三种情况:
- i. 从正上⽅ [i - 1, j] 位置转移到 [i, j] 位置;
- ii. 从左上⽅ [i - 1, j - 1] 位置转移到 [i, j] 位置;
- iii. 从右上⽅ [i - 1, j + 1] 位置转移到 [i, j] 位置;
我们要的是三种情况下的「最⼩值」,然后再加上矩阵在 [i, j] 位置的值。
于是 dp[i][j] = min(dp[i - 1][j], min(dp[i - 1][j - 1], dp[i - 1][j +
1])) + matrix[i][j] 。
-
初始化:
可以在最前⾯加上⼀个「辅助结点」,帮助我们初始化。使⽤这种技巧要注意两个点:
- i. 辅助结点⾥⾯的值要「保证后续填表是正确的」;
- ii. 「下标的映射关系」。 在本题中,需要「加上⼀⾏」,并且「加上两列」。所有的位置都初始化为⽆穷⼤,然后将第⼀⾏初始化为 0 即可。
-
填表顺序:
根据「状态表⽰」,填表的顺序是「从上往下」。
-
返回值:
注意这⾥不是返回 dp[m][n] 的值!
题⽬要求「只要到达最后⼀⾏」就⾏了,因此这⾥应该返回「 dp 表中最后⼀⾏的最⼩值」。
4.4 C++算法代码:
class Solution {
public:
int minFallingPathSum(vector<vector<int>>& matrix) {
int n = matrix.size();
vector<vector<int>> dp(n + 1, vector<int> (n + 2, INT_MAX));
for(int j = 0; j < n + 2; j++) dp[0][j] = 0;
for(int i = 1; i <= n; i++)
for(int j = 1; j <= n; j++)
dp[i][j] = min(dp[i - 1][j - 1], min(dp[i - 1][j], dp[i - 1][j + 1])) + matrix[i - 1][j - 1];
int ret = INT_MAX;
for(int j = 1; j <= n; j++)
ret = min(ret, dp[n][j]);
return ret;
}
};
5 最小路径和
5.1 题目链接
5.2 题目描述
给定一个包含非负整数的 m x n 网格 grid ,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。
说明: 每次只能向下或者向右移动一步。
示例 1:
输入: grid = [[1,3,1],[1,5,1],[4,2,1]]
输出: 7
解释: 因为路径 1→3→1→1→1 的总和最小。
示例 2:
输入: grid = [[1,2,3],[4,5,6]]
输出: 12
提示:
m == grid.lengthn == grid[i].length1 <= m, n <= 2000 <= grid[i][j] <= 200
5.3 解法(动态规划):
算法思路:
像这种表格形式的动态规划,是⾮常容易得到「状态表⽰」以及「状态转移⽅程」的,可以归结到「不同路径」⼀类的题⾥⾯。
-
状态表⽰:
对于这种路径类的问题,我们的状态表⽰⼀般有两种形式:
- i. 从 [i, j] 位置出发,巴拉巴拉;
- ii. 从起始位置出发,到达 [i, j] 位置,巴拉巴拉。
这⾥选择第⼆种定义状态表⽰的⽅式:
dp[i][j] 表⽰:到达 [i, j] 位置处,最⼩路径和是多少。
-
状态转移:
简单分析⼀下。如果 dp[i][j] 表⽰到达 到达 [i, j] 位置处的最⼩路径和,那么到达[i, j] 位置之前的⼀⼩步,有两种情况:
- i. 从 [i - 1, j] 向下⾛⼀步,转移到 [i, j] 位置;
- ii. 从 [i, j - 1] 向右⾛⼀步,转移到 [i, j] 位置。
由于到 [i, j] 位置两种情况,并且我们要找的是最⼩路径,因此只需要这两种情况下的最⼩值,再加上 [i, j] 位置上本⾝的值即可。
也就是: dp[i][j] = min(dp[i - 1][j], dp[i][j - 1]) + grid[i][j]
-
初始化
可以在最前⾯加上⼀个「辅助结点」,帮助我们初始化。使⽤这种技巧要注意两个点:
- i. 辅助结点⾥⾯的值要「保证后续填表是正确的」;
- ii. 「下标的映射关系」。
在本题中,「添加⼀⾏」,并且「添加⼀列」后,所有位置的值可以初始化为⽆穷⼤,然后让
dp[0][1] = dp[1][0] = 1 即可。
-
填表顺序:
根据「状态转移⽅程」的推导来看,填表的顺序就是「从上往下」填每⼀⾏,每⼀⾏「从左往后」。
-
返回值:
根据「状态表⽰」,我们要返回的结果是 dp[m][n] 。
5.4 C++算法代码:
class Solution {
public:
int minPathSum(vector<vector<int>>& grid) {
int m = grid.size(), n =grid[0].size();
vector<vector<int>> dp(m + 1, vector<int>(n + 1, INT_MAX));
dp[0][1] = dp[1][0] = 0;
for(int i = 1;i <= m; i++)
for(int j = 1; j <= n; j++)
dp[i][j] = min(dp[i - 1][j], dp[i][j - 1]) + grid[i - 1][j - 1];
return dp[m][n];
}
};
6 地下城游戏
6.1 题目链接
6.2 题目描述
恶魔们抓住了公主并将她关在了地下城 dungeon 的 右下角 。地下城是由 m x n 个房间组成的二维网格。我们英勇的骑士最初被安置在 左上角 的房间里,他必须穿过地下城并通过对抗恶魔来拯救公主。
骑士的初始健康点数为一个正整数。如果他的健康点数在某一时刻降至 0 或以下,他会立即死亡。
有些房间由恶魔守卫,因此骑士在进入这些房间时会失去健康点数(若房间里的值为负整数,则表示骑士将损失健康点数);其他房间要么是空的(房间里的值为 0),要么包含增加骑士健康点数的魔法球(若房间里的值为正整数,则表示骑士将增加健康点数)。
为了尽快解救公主,骑士决定每次只 向右 或 向下 移动一步。
返回确保骑士能够拯救到公主所需的最低初始健康点数。
注意: 任何房间都可能对骑士的健康点数造成威胁,也可能增加骑士的健康点数,包括骑士进入的左上角房间以及公主被监禁的右下角房间。
示例 1:
输入: dungeon = [[-2,-3,3],[-5,-10,1],[10,30,-5]]
输出: 7
解释: 如果骑士遵循最佳路径:右 -> 右 -> 下 -> 下 ,则骑士的初始健康点数至少为 7 。
示例 2:
输入: dungeon = [[0]]
输出: 1
提示:
m == dungeon.lengthn == dungeon[i].length1 <= m, n <= 200-1000 <= dungeon[i][j] <= 1000
6.3 解法(动态规划)
算法思路:
-
状态表⽰:
这道题如果我们定义成:从起点开始,到达 [i, j] 位置的时候,所需的最低初始健康点数。那么我们分析状态转移的时候会有⼀个问题:那就是我们当前的健康点数还会受到后⾯的路径的影响。也就是从上往下的状态转移不能很好地解决问题。
这个时候我们要换⼀种状态表⽰:从 [i, j] 位置出发,到达终点时所需要的最低初始健康点数。这样我们在分析状态转移的时候,后续的最佳状态就已经知晓。
综上所述,定义状态表⽰为:
dp[i][j] 表⽰:从 [i, j] 位置出发,到达终点时所需的最低初始健康点数。
-
状态转移⽅程:
对于 dp[i][j] ,从 [i, j] 位置出发,下⼀步会有两种选择(为了⽅便理解,设 dp[i][j] 的最终答案是 x ):
- i. ⾛到右边,然后⾛向终点 那么我们在 [i, j] 位置的最低健康点数加上这⼀个位置的消耗,应该要⼤于等于右边位置的最低健康点数,也就是: x + dungeon[i][j] >= dp[i][j + 1] 。
通过移项可得: x >= dp[i][j + 1] - dungeon[i][j] 。因为我们要的是最⼩值,因此这种情况下的 x = dp[i][j + 1] - dungeon[i][j] ;
- ii. ⾛到下边,然后⾛向终点 那么我们在 [i, j] 位置的最低健康点数加上这⼀个位置的消耗,应该要⼤于等于下边位置的最低健康点数,也就是: x + dungeon[i][j] >= dp[i + 1][j] 。
通过移项可得: x >= dp[i + 1][j] - dungeon[i][j] 。因为我们要的是最⼩值,因此这种情况下的 x = dp[i + 1][j] - dungeon[i][j] ;
综上所述,我们需要的是两种情况下的最⼩值,因此可得状态转移⽅程为: dp[i][j] = min(dp[i + 1][j], dp[i][j + 1]) - dungeon[i][j]
但是,如果当前位置的 dungeon[i][j] 是⼀个⽐较⼤的正数的话, dp[i][j] 的值可能变成 0 或者负数。也就是最低点数会⼩于 1 ,那么骑⼠就会死亡。因此我们求出来的 dp[i][j] 如果⼩于等于 0 的话,说明此时的最低初始值应该为 1 。处理这种情况仅需让 dp[i][j] 与 1 取⼀个最⼤值即可: dp[i][j] = max(1, dp[i][j])
-
初始化:
可以在最前⾯加上⼀个「辅助结点」,帮助我们初始化。使⽤这种技巧要注意两个点
- i. 辅助结点⾥⾯的值要「保证后续填表是正确的」;
- ii. 「下标的映射关系」。
在本题中,在 dp 表最后⾯添加⼀⾏,并且添加⼀列后,所有的值都先初始化为⽆穷⼤,然后让 dp[m][n - 1] = dp[m - 1][n] = 1 即可。
-
填表顺序:
根据「状态转移⽅程」,我们需要「从下往上填每⼀⾏」,「每⼀⾏从右往左」。
-
返回值:
根据「状态表⽰」,我们需要返回 dp[0][0] 的值。
6.4 C++算法代码:
class Solution {
public:
int calculateMinimumHP(vector<vector<int>>& dungeon) {
int m = dungeon.size(), n =dungeon[0].size();
vector<vector<int>> dp(m + 1, vector<int> (n + 1, INT_MAX));
dp[m][n - 1] = dp[m - 1][n] = 1;
for(int i = m - 1; i >= 0; i--)
{
for(int j = n - 1; j >= 0; j--)
{
dp[i][j] = min(dp[i + 1][j], dp[i][j + 1]) - dungeon[i][j];
dp[i][j] = max(1, dp[i][j]);
}
}
return dp[0][0];
}
};