一、CountDownLatch
1.1 概述
让一些线程阻塞直到另外一些完成后才被唤醒。
该类主要有两个方法,当一个或多个线程调用await
方法时,调用线程会被阻塞。其他线程调用 countDown
方法计数器减1(调用countDown
方法时线程不会阻塞),当计数器的值变为0,因调用await
方法被阻塞的线程会被唤醒继续执行。
1.2 模拟场景
有 6 名学生上完课后,离开教室,但他们离开的时间不相同,班长需要最后一个离开,锁上教室的门。
1.3 程序模拟
1.3.1 使用 CountDownLatch 之前
public void closeDoor() {
for (int i = 1; i <= 6; i++) {
new Thread(() -> {
System.out.println(Thread.currentThread().getName() + " 离开教室");
}, String.valueOf(i)).start();
}
System.out.println(Thread.currentThread().getName() + " 班长锁门离开教室");
}
1.3.2 使用 CountDownLatch 之后
public void closeDoor() throws InterruptedException {
CountDownLatch countDownLatch = new CountDownLatch(6);
for (int i = 1; i <= 6; i++) {
new Thread(() -> {
System.out.println(Thread.currentThread().getName() + " 离开教室");
countDownLatch.countDown();
}, String.valueOf(i)).start();
}
countDownLatch.await();
System.out.println(Thread.currentThread().getName() + " 班长锁门离开教室");
}
1.4 CountDownLatch 配合枚举类的使用
private static void nationalUnification() throws InterruptedException {
CountDownLatch countDownLatch = new CountDownLatch(6);
for (int i = 1; i <= 6; i++) {
new Thread(() -> {
System.out.println(Thread.currentThread().getName() + "国被灭...");
countDownLatch.countDown();
}, CountryEnum.forEachCountryEnum(i).getCountry()).start();
}
countDownLatch.await();
System.out.println(Thread.currentThread().getName() + " 秦国灭六国,一统华夏");
}
// 枚举类,存储国家的名字
public enum CountryEnum {
ONE(1, "齐"),
TWO(2, "楚"),
THREE(3, "燕"),
FOUR(4, "赵"),
FIVE(5, "魏"),
SIX(6, "韩");
private Integer code;
private String country;
CountryEnum(Integer code, String country) {
this.code = code;
this.country = country;
}
public Integer getCode() {
return code;
}
public String getCountry() {
return country;
}
public static CountryEnum forEachCountryEnum(int index) {
CountryEnum[] countryEnums = CountryEnum.values();
for (CountryEnum element : countryEnums) {
if (element.getCode() == index) {
return element;
}
}
return null;
}
}
二、CyclicBarrier
2.1 概述
CyclicBarrier
的字面意思是可循环(Cyclic),使用的屏障(barrier)。它要做的事情是,让一组线程到达一个屏障(也可以叫做同步点)时被阻塞,直到最后一个线程到达屏障时,屏障才会开门,所有被屏障拦截的线程才会继续干活,线程进入屏障通过CyclicBarrier
的await()
方法。
2.2 示例
public void meet() {
CyclicBarrier cyclicBarrier = new CyclicBarrier(10, () -> {
System.out.println("人齐了,准备开会");
});
for (int i = 1; i <= 10; i++) {
new Thread(() -> {
System.out.println(Thread.currentThread().getName() + " 来到会议室");
try {
cyclicBarrier.await();
} catch (InterruptedException | BrokenBarrierException e) {
e.printStackTrace();
}
}, String.valueOf(i)).start();
}
}
三、Semaphore
3.1 概述
A counting semaphore. Conceptually, a semaphore maintains a set of permits. Each acquire() blocks if necessary until a permit is available, and then takes it. Each release() adds a permit, potentially releasing a blocking acquirer. However, no actual permit objects are used; the Semaphore just keeps a count of the number available and acts accordingly.
计数信号量。从概念上讲,信号量维护一组许可。如有必要,每个acquire()
都会阻止,直到许可证可用,然后接受它。每个release()
都会添加一个许可证,从而可能释放一个阻塞收单器。但是,没有使用实际的许可对象;信号量只是保留可用数量的计数并采取相应的行动。
3.2 示例
public void semaphoreTest() {
Semaphore semaphore = new Semaphore(3);
for (int i = 1; i <= 6; i++) {
new Thread(() -> {
try {
semaphore.acquire();
System.out.println(Thread.currentThread().getName() + " 抢到车位...");
TimeUnit.SECONDS.sleep(3);
System.out.println(Thread.currentThread().getName() + "停车3秒,离开车位");
} catch (InterruptedException e) {
e.printStackTrace();
} finally {
semaphore.release();
}
}, String.valueOf(i)).start();
}
}