构建本地知识库(上): langchain+ollama构建本地大模型应用

1,434 阅读8分钟

目标

在本地个人电脑上搭建一个基于大模型的本地知识库。在这个过程中能够实践并学习:

  1. 如何在本地部署运行大模型
  2. 如何基于大模型开发应用程序
  3. 如何利用RAG构建本地知识库

资源准备

要实现这个目标,需要考虑几个问题:

  1. 如何在本地设备上部署大模型?能部署哪些大模型?
  2. 应该如何基于大模型构建应用?
  3. 如何构建RAG应用?

对于问题1,我们需要一个大模型,这个大模型相对于正常大模型而言比较小,以满足能在我们本地设备上跑起起来的需求(CPU only),同时我们需要寻找一个工具,这个功能最好是能够帮助我们快速的下载,部署运行大模型。对于问题2,3我们应当寻找一个AI应用构建的框架,来帮我们快速集成大模型,构建应用。

LLaMA

LLaMA(英语:Large Language Model Meta AI)是Meta AI公司于2023年2月发布的大型语言模型。它训练了各种模型,这些模型的参数从70亿到650亿不等。LLaMA的开发人员报告说,LLaMA运行的130亿参数模型在大多数NLP基准测试中的性能超过了更大的、具有1750亿参数的GPT-3提供的模型,且LLaMA的模型可以与PaLMChinchilla等最先进的模型竞争。虽然其他强大的大语言模型通常只能通过有限的API访问,但Meta在非商业许可的情况下发布了LLaMA的模型权重,供研究人员参考和使用。2023年7月,Meta推出LLaMA2,这是一种可用于商业应用的开源AI模型。2024年4月18日,Meta发布了Llama 3。

在LLaMA中,有各种不同参数大小的模型可供选择,非常适合用来在本地做研究和学习。

使用OpenAI或者其他的模型可能需要先获取相应的key,并可能产生计费!因此,作为学习目的的话我们还是最好使用本地部署的大模型来进行。

Ollama

Ollama 是一个便于本地部署和运行大型语言模型(Large Language Models, LLMs)的工具。使用通俗的语言来说,如果你想在自己的电脑上运行如 GPT-3 这样的大型人工智能模型,而不是通过互联网连接到它们,那么 Ollama 是一个实现这一目标的工具。

主要功能

  1. 本地运行大型语言模型:Ollama 允许用户在自己的设备上直接运行各种大型语言模型,包括 Llama 2、Mistral、Dolphin Phi 等多种模型。这样用户就可以在没有网络连接的情况下也能使用这些先进的人工智能模型。
  2. 跨平台支持:Ollama 支持 macOS、Windows(预览版)、Linux 以及 Docker,这使得几乎所有主流操作系统的用户都可以利用这个工具。
  3. 语言库和第三方库支持:它提供了一个模型库,用户可以从中下载并运行各种模型。此外,也支持通过 ollama-python 和 ollama-js 等库与其他软件集成。
  4. 快速启动和易于定制:用户只需简单的命令就可以运行模型。对于想要自定义模型的用户,Ollama 也提供了如从 GGUF 导入模型、调整参数和系统消息以及创建自定义提示(prompt)的功能。

LangChain

LangChain 是一个用于开发由语言模型驱动的应用程序的框架。它使得应用程序能够:

  • 具有上下文感知能力:将语言模型连接到上下文来源(提示指令,少量的示例,需要回应的内容等)
  • 具有推理能力:依赖语言模型进行推理(根据提供的上下文如何回答,采取什么行动等)

  这个框架由几个部分组成。

  • LangChain 库:Python 和 JavaScript 库。包含了各种组件的接口和集成,一个基本的运行时,用于将这些组件组合成链和代理,以及现成的链和代理的实现。
  • LangChain 模板:一系列易于部署的参考架构,用于各种任务。
  • LangServe:一个用于将 LangChain 链部署为 REST API 的库。
  • LangSmith:一个开发者平台,让你可以调试、测试、评估和监控基于任何 LLM 框架构建的链,并且与 LangChain 无缝集成。

  更多langchain内容请参考官网

Conda(可选)

Conda 是一款功能强大的命令行工具,用于包和环境管理,可在 Windows、macOS 和 Linux 上运行。它可以快速的安装和更新环境依赖。例如,我想在我的电脑上需要同时python2和python3的环境,因为有的项目依赖python2,有的项目依赖python3。如果没有conda,会是很麻烦的事,而conda可以解决不同项目的环境依赖问题,可以隔离出两个环境分别让具有不同依赖的两个项目使用。

更多conda相关内容请参考官网

环境搭建

下载Ollama

进入官网,点击【Dpwonload】,然后选择适合自己机器的版本进行下载

以windows为例。下载完成后,点击安装包进行安装。这里有个坑稍微注意下:安装默认是不能够选择安装路径的,这就导致默认会安装到C盘。后续下载的模型也会进入C:\Users<用户名>.ollama\models目录下。一般来说模型会比较大(通常是几十G),这就会导致C盘资源很快会被占满。解决方法是:设置OLLAMA_MODELS环境变量, 使模型下载到指定的路径。修改后重启Ollama生效

有两个环境变量需要注意:

OLLAMA_MODELS:OLLAMA模型的下载路径。

OLLAMA_HOST: OLLAMA模型以服务方式运行的时候,即提供API,默认是只能被localhost访问的,设置这个为0.0.0.0,可以被网络访问。

下载大模型

安装完成之后,会弹出对话框(或者手动开启命令行),接下来开始下载大模型。在官网可以看到有哪些模型

等待模型下载完成。

启动Lamma服务

运行命令ollama run llama3:8b,启动模型,此时可以和模型开始进行对话。效果如下:

下载Conda(可选)

Anaconda官网进行下载。下载后按提示进行安装。注意选择自己的安装路径!安装完成后可以通过Anaconda Promot进入操作页面,进行环境创建。

创建一个环境名叫langchain,用于等会运行langchanin,这个环境下的python版本是3.12

安装后激活环境

下载LangChain

如果没有安装conda, 那么使用命令:

pip install langchain

如果已经在conda中并且激活了环境,也可以执行下面命令

conda install langchain -c conda-forge

然后等待相关包的下载

启动LangChain服务

参考官方代码,我们写一个简单的基于大模型的服务代码,利用langServer提供api服务。这里有些点需要注意:

  1. 官方代码中用的大模型是基于OpenAI的,但我们期望的是通过本地模型进行访问。因此,我们要对本地模型进行封装,保证代码访问的是我们本地的模型。
  2. 如果想要让langchain应用程序提供对外访问的api服务,可以使用langchain提供的langServer能力,使用命令

pip install "langserve[all]"进行安装。

完整代码如下:

#!/usr/bin/env python
from typing import List

from fastapi import FastAPI
# from langchain_core.prompts import ChatPromptTemplate
from langchain_core.prompts import PromptTemplate
from langchain_core.output_parsers import StrOutputParser
from langserve import add_routes
import ollama

class CustomLLM1:
    @property
    def _llm_type(self) -> str:
        # 返回我们自定义的模型标记
        return "myLlaMA"
    #     return ChatResult(generations=[generation])
    def __call__(self, prompt: str) -> str:
        # 这里是调用自定义模型或API接口的逻辑
        # print(prompt)
        messages = [
            {"role": "user", "content": prompt.to_string()},
            # 如果需要,可以在这里添加更多的消息历史
        ]

        response = self.llama_completion(messages)
        return response 

    def llama_completion(self, messages: List[dict]) -> str:
        # 调用llama的接口,返回响应
        # return "Hello from llama!"
        print(messages)
        response = ollama.chat(model='llama3:8b', messages=messages)
        print(response['message']['content'])
        return response['message']['content']

# 1. Create prompt template
prompt_template = PromptTemplate(input_variables=[], template="Translate the following into {language}:{text}")

# 2. Create model
model = CustomLLM1()
# 3. Create parser
parser = StrOutputParser()

# 4. Create chain
chain = prompt_template | model | parser

# 4. App definition
app = FastAPI(
  title="LangChain Server",
  version="1.0",
  description="A simple API server using LangChain's Runnable interfaces",
)

# 5. Adding chain route

add_routes(
    app,
    chain,
    path="/chain",
)

if __name__ == "__main__":
    import uvicorn

    uvicorn.run(app, host="localhost", port=8000)

启动后效果如下:

访问地址: http://localhost:8000/chain/playground/。页面上会出现两个待输入的内容:

本地测试

我们这里尝试一个简单的例子:将文本转换成特定语言进行输出。我们设置了两个输入,分别是语言和要转换的内容。运行结果成功返回了大模型处理之后的结果。

总结

本章主要阐述了本地构建基于大模型的应用程序的过程。从资源准备分析到实际搭建,一步步的指导应该如何在本地搭建一个基于大模型的应用程序。感兴趣的小伙伴可以自己动手试一下。

下一篇文章中我们基于此利用RAG技术来构建完整的本地知识库。

PS:本人电脑配置:windows系统,4核8G。

参考文档

  1. zh.wikipedia.org/zh-hans/LLa…
  2. aibard123.com/newtutorial…
  3. python.langchain.com.cn/docs/get_st…
  4. conda.io/projects/co…
  5. python.langchain.com/v0.2/docs/t…