1 利用电脑显卡训练
找到 网络模型,数据(输入、标注),损失函数
加上.cuda(),下☆代码
同时增加time,以查看运行时间
import torchvision
import torch
from torch import nn
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
import time # ☆
class Tudui(nn.Module):
def __init__(self):
super(Tudui, self).__init__()
self.model1 = nn.Sequential(
nn.Conv2d(3, 32, 5, 1, 2),
nn.MaxPool2d(2),
nn.Conv2d(32, 32, 5, 1, 2),
nn.MaxPool2d(2),
nn.Conv2d(32, 64, 5, 1, 2),
nn.MaxPool2d(2),
nn.Flatten(), # 展平后变成 64*4*4 了
nn.Linear(64 * 4 * 4, 64),
nn.Linear(64, 10)
)
def forward(self, x):
x = self.model1(x)
return x
# 1 准备数据集
train_data = torchvision.datasets.CIFAR10("./dataset", train=True, transform=torchvision.transforms.ToTensor(),
download=True)
test_data = torchvision.datasets.CIFAR10("./dataset", train=False, transform=torchvision.transforms.ToTensor(),
download=True)
# length 长度
train_data_size = len(train_data)
test_data_size = len(test_data)
# 如果train_data_size=10,则打印:训练数据集的长度为:10
print("训练数据集的长度:{}".format(train_data_size))
print("测试数据集的长度:{}".format(test_data_size))
# 2 利用 Dataloader 来加载数据集
train_dataloader = DataLoader(train_data, batch_size=64)
test_dataloader = DataLoader(test_data, batch_size=64)
# 3 创建网络模型
tudui = Tudui()
#if torch.cuda.is_available():
tudui = tudui.cuda() # ☆ 网络模型转移到cuda上
# 4 损失函数
loss_fn = nn.CrossEntropyLoss()
if torch.cuda.is_available():
loss_fn = loss_fn.cuda() # ☆ 损失函数转移到cuda上
# 5 优化器
learning = 0.01 # 1e-2 就是 0.01 的意思
optimizer = torch.optim.SGD(tudui.parameters(), learning)
# 6 设置网络的一些参数
# 记录训练的次数
total_train_step = 0
# 记录测试的次数
total_test_step = 0
# 训练的轮次
epoch = 10
# 添加 tensorboard
writer = SummaryWriter("logs")
start_time = time.time() # ☆
for i in range(epoch):
print("-----第 {} 轮训练开始-----".format(i + 1))
# 7 训练步骤开始
tudui.train()
for data in train_dataloader:
imgs, targets = data
if torch.cuda.is_available():
imgs = imgs.cuda() # ☆ 数据放到cuda上
targets = targets.cuda() # ☆ 数据放到cuda上
outputs = tudui(imgs)
loss = loss_fn(outputs, targets) # 计算实际输出与目标输出的差距
# 优化器对模型调优
optimizer.zero_grad()
loss.backward()
optimizer.step()
total_train_step = total_train_step + 1
if total_train_step % 100 == 0:
end_time = time.time() # ☆
print(end_time - start_time) # ☆ 运行训练一百次后的时间间隔
print("训练次数:{},Loss:{}".format(total_train_step, loss.item())) #
writer.add_scalar("train_loss", loss.item(), total_train_step)
# 8 测试步骤开始(每一轮训练后都查看在测试数据集上的loss情况)
tudui.eval()
total_test_loss = 0
total_accuracy = 0
with torch.no_grad():
for data in test_dataloader:
imgs, targets = data
if torch.cuda.is_available():
imgs = imgs.cuda() # ☆ 数据放到cuda上
targets = targets.cuda() # ☆ 数据放到cuda上
outputs = tudui(imgs)
loss = loss_fn(outputs, targets)
total_test_loss = total_test_loss + loss.item() # 所有loss
accuracy = (outputs.argmax(1) == targets).sum()
total_accuracy = total_accuracy + accuracy
print("整体测试集上的Loss:{}".format(total_test_loss))
print("整体测试集上的正确率:{}".format(total_accuracy / test_data_size))
writer.add_scalar("test_loss", total_test_loss, total_test_step)
writer.add_scalar("test_accuracy", total_accuracy / test_data_size, total_test_step)
total_test_step = total_test_step + 1
torch.save(tudui, "./model/tudui_{}.pth".format(i))
# torch.save(tudui.state_dict(),"tudui_{}.path".format(i)) # 保存方式二
print("模型已保存")
writer.close()
2 利用google colab训练
google colab 需要谷歌账号,每周免费30h,具体使用流程可以上网搜,或者看小土堆p30 10min处
3 选择GPU0 / 1 训练
删除cuda代码,增加.to(),即带☆的代码
完整的模型验证套路
1 训练30轮的模型
import torchvision
import torch
from torch import nn
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
import time
# 定义训练的设备
#device = torch.device("cpu")
device = torch.device("cuda") # 使用 GPU 方式一
#device = torch.device("cuda:0") # 使用 GPU 方式二
#device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# from model import * 相当于把 model中的所有内容写到这里,这里直接把 model 写在这里
class Tudui(nn.Module):
def __init__(self):
super(Tudui, self).__init__()
self.model1 = nn.Sequential(
nn.Conv2d(3,32,5,1,2), # 输入通道3,输出通道32,卷积核尺寸5×5,步长1,填充2
nn.MaxPool2d(2),
nn.Conv2d(32,32,5,1,2),
nn.MaxPool2d(2),
nn.Conv2d(32,64,5,1,2),
nn.MaxPool2d(2),
nn.Flatten(), # 展平后变成 64*4*4 了
nn.Linear(64*4*4,64),
nn.Linear(64,10)
)
def forward(self, x):
x = self.model1(x)
return x
# 准备数据集
train_data = torchvision.datasets.CIFAR10("./dataset",train=True,transform=torchvision.transforms.ToTensor(),download=True)
test_data = torchvision.datasets.CIFAR10("./dataset",train=False,transform=torchvision.transforms.ToTensor(),download=True)
# length 长度
train_data_size = len(train_data)
test_data_size = len(test_data)
# 如果train_data_size=10,则打印:训练数据集的长度为:10
print("训练数据集的长度:{}".format(train_data_size))
print("测试数据集的长度:{}".format(test_data_size))
# 利用 Dataloader 来加载数据集
train_dataloader = DataLoader(train_data, batch_size=64)
test_dataloader = DataLoader(test_data, batch_size=64)
# 创建网络模型
tudui = Tudui()
tudui = tudui.to(device) # 也可以不赋值,直接 tudui.to(device)
# 损失函数
loss_fn = nn.CrossEntropyLoss() # 交叉熵,fn 是 fuction 的缩写
loss_fn = loss_fn.to(device) # 也可以不赋值,直接loss_fn.to(device)
# 优化器
learning = 0.01 # 1e-2 就是 0.01 的意思
optimizer = torch.optim.SGD(tudui.parameters(),learning) # 随机梯度下降优化器
# 设置网络的一些参数
# 记录训练的次数
total_train_step = 0
# 记录测试的次数
total_test_step = 0
# 训练的轮次
epoch = 30
# 添加 tensorboard
writer = SummaryWriter("logs")
start_time = time.time()
for i in range(epoch):
print("-----第 {} 轮训练开始-----".format(i+1))
# 训练步骤开始
tudui.train() # 当网络中有dropout层、batchnorm层时,这些层能起作用
for data in train_dataloader:
imgs, targets = data
imgs = imgs.to(device) # 也可以不赋值,直接 imgs.to(device)
targets = targets.to(device) # 也可以不赋值,直接 targets.to(device)
outputs = tudui(imgs)
loss = loss_fn(outputs, targets) # 计算实际输出与目标输出的差距
# 优化器对模型调优
optimizer.zero_grad() # 梯度清零
loss.backward() # 反向传播,计算损失函数的梯度
optimizer.step() # 根据梯度,对网络的参数进行调优
total_train_step = total_train_step + 1
if total_train_step % 100 == 0:
end_time = time.time()
print(end_time - start_time) # 运行训练一百次后的时间间隔
print("训练次数:{},Loss:{}".format(total_train_step,loss.item())) # 方式二:获得loss值
writer.add_scalar("train_loss",loss.item(),total_train_step)
# 测试步骤开始(每一轮训练后都查看在测试数据集上的loss情况)
tudui.eval() # 当网络中有dropout层、batchnorm层时,这些层不能起作用
total_test_loss = 0
total_accuracy = 0
with torch.no_grad(): # 没有梯度了
for data in test_dataloader: # 测试数据集提取数据
imgs, targets = data # 数据放到cuda上
imgs = imgs.to(device) # 也可以不赋值,直接 imgs.to(device)
targets = targets.to(device) # 也可以不赋值,直接 targets.to(device)
outputs = tudui(imgs)
loss = loss_fn(outputs, targets) # 仅data数据在网络模型上的损失
total_test_loss = total_test_loss + loss.item() # 所有loss
accuracy = (outputs.argmax(1) == targets).sum()
total_accuracy = total_accuracy + accuracy
print("整体测试集上的Loss:{}".format(total_test_loss))
print("整体测试集上的正确率:{}".format(total_accuracy/test_data_size))
writer.add_scalar("test_loss",total_test_loss,total_test_step)
writer.add_scalar("test_accuracy",total_accuracy/test_data_size,total_test_step)
total_test_step = total_test_step + 1
torch.save(tudui, "./model/tudui_{}.pth".format(i)) # 保存每一轮训练后的结果
#torch.save(tudui.state_dict(),"tudui_{}.path".format(i)) # 保存方式二
print("模型已保存")
writer.close()