1.背景
在做前端项目的时候,发现在计算金额时,会出现精度问题,往往发现最后的精度不准,出于好奇,开始探索为什么会出现精度不准的问题。
2.精度问题
精度问题常见如下:
// 加法 =====================
0.1 + 0.2 = 0.30000000000000004
0.7 + 0.1 = 0.7999999999999999
0.2 + 0.4 = 0.6000000000000001
// 减法 =====================
1.5 - 1.2 = 0.30000000000000004
0.3 - 0.2 = 0.09999999999999998
// 乘法 =====================
19.9 * 100 = 1989.9999999999998
0.8 * 3 = 2.4000000000000004
35.41 * 100 = 3540.9999999999995
// 除法 =====================
0.3 / 0.1 = 2.9999999999999996
0.69 / 10 = 0.06899999999999999
3.精度不准分析
javaScript中能够存储的最大安全整数是2^53=9007199254740992,它的实现遵循IEEE 754标准,使用64位双精度浮点数。
64bit主要由三个部分组成:
- 符号位S:第 1 位是正负数符号位(sign),0代表正数,1代表负数
- 指数位E:中间的 11 位存储指数(exponent),用来表示次方数
- 尾数位M:最后的 52 位是尾数(mantissa),超出的部分自动进一舍零
可视化网站:bartaz.github.io/ieee754-vis…
在IEEE754中,双精度浮点数采用64位存储,存储结构如下图所示:
从存储结构中可以看出, 指数部分的长度是11个二进制,即指数部分能表示的最大值是 2047(2^11-1)
取中间值进行偏移,用来表示负指数,也就是说指数的范围是 [-1023,1024]
举个例子:
当十进制等于是10时:
注意下面最后一行得出来的公式有点问题,i应该从1开始结束52才对
指数位:10000000010转化为十进制等于1026,e = 1026,所以偏移指数1026-1023 = 3
尾数位:
当我把2^3往外提出来的时候,就相当于将小数点往左移动3位,如下图所示:
2^0就是对应的53位隐藏位,2^-2就是小数点后的第二位
上面这种是规约形式,还有其他不同形式,如下表格所示:
| 形式 | 指数位 | 尾数位 | 截图 |
|---|---|---|---|
| 零 | 00000000000 | 0 | |
| 非规约形式 | 00000000000 | 大于0小于1(无前置1) | |
| 规约形式 | 1<x<2^11-2 | 大于等于1小于2(有前置1) | |
| 无穷 | 11111111111 | 0 | |
| NaN | 11111111111 | 非0 |
知道原理以后,可以在看下下面的加法计算:
首先,十进制的0.1和0.2会被转换成二进制的,但是由于浮点数用二进制表示时是无穷的:
0.1 -> 0.0001 1001 1001 1001...(1100循环)
0.2 -> 0.0011 0011 0011 0011...(0011循环)
IEEE 754 标准的 64 位双精度浮点数的小数部分最多支持53位二进制位,所以两者相加之后得到二进制为:
0.0100110011001100110011001100110011001100110011001100
因浮点数小数位的限制而截断的二进制数字,再转换为十进制,就成了0.30000000000000004。所以在进行算术计算时会产生误差。
4.解决精准问题
就是将浮点数转换成整数,进行相乘,相加或者相减,最后再除以对应倍数即可
/*** method **
* add / subtract / multiply /divide
* floatObj.add(0.1, 0.2) >> 0.3
* floatObj.multiply(19.9, 100) >> 1990
*
*/
var floatObj = function() {
/*
* 判断obj是否为一个整数
*/
function isInteger(obj) {
return Math.floor(obj) === obj
}
/*
* 将一个浮点数转成整数,返回整数和倍数。如 3.14 >> 314,倍数是 100
* @param floatNum {number} 小数
* @return {object}
* {times:100, num: 314}
*/
function toInteger(floatNum) {
var ret = {times: 1, num: 0}
if (isInteger(floatNum)) {
ret.num = floatNum
return ret
}
var strfi = floatNum + ''
var dotPos = strfi.indexOf('.')
var len = strfi.substr(dotPos+1).length
var times = Math.pow(10, len)
var intNum = Number(floatNum.toString().replace('.',''))
ret.times = times
ret.num = intNum
return ret
}
/*
* 核心方法,实现加减乘除运算,确保不丢失精度
* 思路:把小数放大为整数(乘),进行算术运算,再缩小为小数(除)
*
* @param a {number} 运算数1
* @param b {number} 运算数2
* @param digits {number} 精度,保留的小数点数,比如 2, 即保留为两位小数
* @param op {string} 运算类型,有加减乘除(add/subtract/multiply/divide)
*
*/
function operation(a, b, digits, op) {
var o1 = toInteger(a)
var o2 = toInteger(b)
var n1 = o1.num
var n2 = o2.num
var t1 = o1.times
var t2 = o2.times
var max = t1 > t2 ? t1 : t2
var result = null
switch (op) {
case 'add':
if (t1 === t2) { // 两个小数位数相同
result = n1 + n2
} else if (t1 > t2) { // o1 小数位 大于 o2
result = n1 + n2 * (t1 / t2)
} else { // o1 小数位 小于 o2
result = n1 * (t2 / t1) + n2
}
return result / max
case 'subtract':
if (t1 === t2) {
result = n1 - n2
} else if (t1 > t2) {
result = n1 - n2 * (t1 / t2)
} else {
result = n1 * (t2 / t1) - n2
}
return result / max
case 'multiply':
result = (n1 * n2) / (t1 * t2)
return result
case 'divide':
result = (n1 / n2) * (t2 / t1)
return result
}
}
// 加减乘除的四个接口
function add(a, b, digits) {
return operation(a, b, digits, 'add')
}
function subtract(a, b, digits) {
return operation(a, b, digits, 'subtract')
}
function multiply(a, b, digits) {
return operation(a, b, digits, 'multiply')
}
function divide(a, b, digits) {
return operation(a, b, digits, 'divide')
}
// exports
return {
add: add,
subtract: subtract,
multiply: multiply,
divide: divide
}
}();