网络模型保存,读取及完整的模型训练套路

84 阅读3分钟

1 保存模型

# model_save.py
# 保存方式1:保存网络模型结构
import torchvision
import torch
vgg16 = torchvision.models.vgg16(pretrained=False)
torch.save(vgg16,"vgg16_method1.pth") 		     
print(vgg16)

# 保存方式2:模型参数(官方推荐),保存参数为字典类型 
import torchvision
import torch
vgg16 = torchvision.models.vgg16(pretrained=False)
torch.save(vgg16.state_dict(),"vgg16_method2.pth") # 
print(vgg16)

2 读取

# model_load.py
# 读取方式1:对应保存方式1
import torch
model1 = torch.load("vgg16_method1.pth")    
print(model1)

# 取方式2:对应保存方式2
model2 = torchvision.models.vgg16(pretrained=False)
model2.load_state_dict(torch.load("vgg16_method2.pth"))   
print(model2)

3 保存方式1存在陷阱

import torch

class Tudui(nn.Module):
    def __init__(self):
        super(Tudui,self).__init__()
        self.conv1 = nn.Conv2d(3, 64, kernel_size=3)
        
    def forward(self,x):
        x = self.conv1(x)
        return x

tudui = Tudui()
torch.save(tudui, "tudui_method1.pth")

# load.py
import torch
model = torch.load("./model/tudui_method1.pth")  # 无法直接取方式一保存的网络结构    
print(model)

1 CIFAR 10 model 网络模型

e61094aa0cc24492ad6bdd9b214612ff.png

1 model.py

import torch
from torch import nn

# 搭建神经网络
class Tudui(nn.Module):
    def __init__(self):
        super(Tudui, self).__init__()        
        self.model1 = nn.Sequential(
            nn.Conv2d(3,32,5,1,2),  # 输入通道3,输出通道32,卷积核尺寸5×5,步长1,填充2    
            nn.MaxPool2d(2),
            nn.Conv2d(32,32,5,1,2),
            nn.MaxPool2d(2),
            nn.Conv2d(32,64,5,1,2),
            nn.MaxPool2d(2),
            nn.Flatten(),  # 展平后变成 64*4*4 了
            nn.Linear(64*4*4,64),
            nn.Linear(64,10)
        )
        
    def forward(self, x):
        x = self.model1(x)
        return x
    
if __name__ == '__main__':
    tudui = Tudui()
    input = torch.ones((64,3,32,32))
    output = tudui(input)
    print(output.shape)  			# 测试输出的尺寸是否符合需求

2 train.py

(1)item的作用

import torch
a = torch.tensor(5)
print(a)
print(a.item())


(2)argmax()

import torch
outputs = torch.tensor([[0.1, 0.2],
                        [0.05, 0.4]])
print(outputs.argmax(0))  # 返回纵向 每一列最大值的索引
print(outputs.argmax(1))  # 返回横向 每一行最大值的索引
preds = outputs.argmax(1)
targets = torch.tensor([0,1])
print((preds == targets)		# 对应位置是否相等,相等则返回true
print((preds == targets).sum()) # 对应位置相等的个数

(3)tudui.train()和tudui.eval()  :分别用于训练步骤和测试步骤,只对特定层起作用,本代码非必要

(4)完整代码

import torch
import torchvision
from model import *
from torch import nn
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

# 1 准备数据集
train_data = torchvision.datasets.CIFAR10("./dataset", train=True, transform=torchvision.transforms.ToTensor(),
                                          download=True)
test_data = torchvision.datasets.CIFAR10("./dataset", train=False, transform=torchvision.transforms.ToTensor(),
                                         download=True)

# length 长度
train_data_size = len(train_data)
test_data_size = len(test_data)
# 如果train_data_size=10,则打印:训练数据集的长度为:10
print("训练数据集的长度:{}".format(train_data_size))
print("测试数据集的长度:{}".format(test_data_size))

# 2 利用 Dataloader 来加载数据集
train_dataloader = DataLoader(train_data, batch_size=64)
test_dataloader = DataLoader(test_data, batch_size=64)

# 3 创建网络模型
tudui = Tudui()

# 4 损失函数
loss_fn = nn.CrossEntropyLoss()  # 交叉熵,fn 是 fuction 的缩写

# 5 优化器
learning_rate  = 1e-2  # 1e-2 = 1 * (10)^(-2) = 1 / 100 = 0.01
optimizer = torch.optim.SGD(tudui.parameters(), lr=learning_rate  )  # 随机梯度下降优化器

# 6 设置网络的一些参数
# 记录训练的次数
total_train_step = 0
# 记录测试的次数
total_test_step = 0

# 训练的轮次
epoch = 10
# 添加tensorboard
writer = SummaryWriter("../logs_train")

for i in range(epoch):
    print("-----第 {} 轮训练开始-----".format(i + 1))

    # 7 训练步骤开始
    # tudui.train() # 当网络中有dropout层、batchnorm等层时才起作用,本代码非必要
    for data in train_dataloader:
        imgs, targets = data
        outputs = tudui(imgs)
        loss = loss_fn(outputs, targets)

        # 优化器对模型调优
        optimizer.zero_grad()  # 梯度清零
        loss.backward()  # 反向传播,计算损失函数的梯度
        optimizer.step()  # 根据梯度,对网络的参数进行调优

        total_train_step = total_train_step + 1
         if total_train_step % 100 == 0:
         	# print("训练次数:{},Loss:{}".format(total_train_step,loss))  # 方式1:获得无tensor的loss值
            print("训练次数:{},Loss:{}".format(total_train_step, loss.item()))  # 方式2:获得loss数字值
            writer.add_scalar("train_loss", loss.item(), total_train_step)

        			
        

    # 8 测试步骤开始(每一轮训练后都查看在测试数据集上的loss情况)
    # tudui.eval()  # 当网络中有dropout层、batchnorm等层时才起作用,本代码非必要
    total_test_loss = 0  # 测试集总损失
    total_accuracy = 0  # 准确度

    with torch.no_grad():  # 测试无需梯度计算,节约内存
        for data in test_dataloader:  # 测试数据集提取数据
            imgs, targets = data
            outputs = tudui(imgs)
            loss = loss_fn(outputs, targets)  # 仅data数据在网络模型上的损失
            total_test_loss = total_test_loss + loss.item()  # 所有loss
            accuracy = (outputs.argmax(1) == targets).sum()  # 准确度
            total_accuracy = total_accuracy + accuracy  # 准确度总和

print("整体测试集上的Loss:{}".format(total_test_loss))
print("整体测试集上的正确率:{}".format(total_accuracy / test_data_size))
writer.add_scalar("test_loss", total_test_loss, total_test_step)
writer.add_scalar("test_accuracy", total_accuracy / test_data_size, total_test_step)
total_test_step = total_test_step + 1

# 9 保存模型
torch.save(tudui, "./model/tudui_{}.pth".format(i))  # 保存每一轮训练后的结果
print("模型已保存")

writer.close()