基于PSO粒子群优化的CNN-LSTM的时间序列回归预测matlab仿真

80 阅读3分钟

1.算法运行效果图预览

 

1.jpeg

2.jpeg

3.jpeg

4.jpeg

 

2.算法运行软件版本

matlab2022a

 

3.部分核心程序

`for i=1:Iter

    i

    for j=1:Npeop

        rng(i+j)

        if func_obj(x1(j,:))<pbest1(j)

           p1(j,:)   = x1(j,:);%变量

           pbest1(j) = func_obj(x1(j,:));

        end

        if pbest1(j)<gbest1

           g1     = p1(j,:);%变量

           gbest1 = pbest1(j);

        end

       

        v1(j,:) = 0.8v1(j,:)+c1rand*(p1(j,:)-x1(j,:))+c2rand(g1-x1(j,:));

        x1(j,:) = x1(j,:)+v1(j,:);

        

        for k=1:dims

            if x1(j,k) >= tmps(2,k)

               x1(j,k) = tmps(2,k);

            end

            if x1(j,k) <= tmps(1,k)

               x1(j,k) = tmps(1,k);

            end

        end

 

        for k=1:dims

            if v1(j,k) >= tmps(2,k)/2

               v1(j,k) =  tmps(2,k)/2;

            end

            if v1(j,k) <= tmps(1,k)/2

               v1(j,k) =  tmps(1,k)/2;

            end

        end

 

    end

    gb1(i)=gbest1

end

 

figure;

plot(gb1,'-bs',...

    'LineWidth',1,...

    'MarkerSize',6,...

    'MarkerEdgeColor','k',...

    'MarkerFaceColor',[0.9,0.0,0.0]);

 

xlabel('优化迭代次数');

ylabel('适应度值');

.....................................................

figure;

plot(IT(1:1:end),Accuracy(1:1:end));

xlabel('epoch');

ylabel('RMSE');

%数据预测

Dpre1 = predict(Net, Nsp_train2);

Dpre2 = predict(Net, Nsp_test2);

 

%归一化还原

T_sim1=Dpre1*Vmax2;

T_sim2=Dpre2*Vmax2;

 

 

%网络结构

analyzeNetwork(Net)

 

 

figure

subplot(211);

plot(1: Num1, Tat_train,'-bs',...

    'LineWidth',1,...

    'MarkerSize',6,...

    'MarkerEdgeColor','k',...

    'MarkerFaceColor',[0.9,0.0,0.0]);

hold on

plot(1: Num1, T_sim1,'g',...

    'LineWidth',2,...

    'MarkerSize',6,...

    'MarkerEdgeColor','k',...

    'MarkerFaceColor',[0.9,0.9,0.0]);

 

legend('真实值', '预测值')

xlabel('预测样本')

ylabel('预测结果')

grid on

 

subplot(212);

plot(1: Num1, Tat_train-T_sim1','-bs',...

    'LineWidth',1,...

    'MarkerSize',6,...

    'MarkerEdgeColor','k',...

    'MarkerFaceColor',[0.9,0.0,0.0]);

 

xlabel('预测样本')

ylabel('预测误差')

grid on

ylim([-50,50]);

figure

subplot(211);

plot(1: Num2, Tat_test,'-bs',...

    'LineWidth',1,...

    'MarkerSize',6,...

    'MarkerEdgeColor','k',...

    'MarkerFaceColor',[0.9,0.0,0.0]);

hold on

plot(1: Num2, T_sim2,'g',...

    'LineWidth',2,...

    'MarkerSize',6,...

    'MarkerEdgeColor','k',...

    'MarkerFaceColor',[0.9,0.9,0.0]);

legend('真实值', '预测值')

xlabel('测试样本')

ylabel('测试结果')

grid on

subplot(212);

plot(1: Num2, Tat_test-T_sim2','-bs',...

    'LineWidth',1,...

    'MarkerSize',6,...

    'MarkerEdgeColor','k',...

    'MarkerFaceColor',[0.9,0.0,0.0]);

 

xlabel('预测样本')

ylabel('预测误差')

grid on

ylim([-50,50]);

 

 

save R2.mat Num2 Tat_test T_sim2 gb1 Accuracy`

 

4.算法理论概述

        基于粒子群优化(Particle Swarm Optimization, PSO)的卷积神经网络-长短期记忆网络(Convolutional Neural Network - Long Short-Term Memory, CNN-LSTM)模型在时间序列回归预测中,结合了深度学习的强大表达能力和优化算法的高效搜索能力,为复杂时间序列数据的预测提供了一种强有力的解决方案。

 

4.1 卷积神经网络(CNN)

        CNN以其在图像识别领域的卓越表现而闻名,但其在时间序列分析中也显示出了强大的潜力。CNN通过局部连接和权值共享减少参数数量,利用卷积层捕获输入数据的空间特征。

 

image.png

 

4.2 长短期记忆网络(LSTM)

       LSTM是RNN的一种变体,特别擅长处理长序列依赖问题。它通过门控机制控制信息的遗忘、更新和输出,有效缓解了梯度消失/爆炸问题。

 

image.png

 

4.3 CNN-LSTM结合PSO的时间序列预测

       在时间序列预测任务中,首先使用CNN对输入序列进行特征提取,然后将提取到的特征作为LSTM的输入,进一步捕捉序列中的时序依赖关系。整个网络的参数(包括CNN的卷积核权重、LSTM的门控参数等)构成了PSO算法的搜索空间。

 

结合PSO的过程:

 

初始化一组粒子,每个粒子代表一组CNN-LSTM模型的参数。

对于每个粒子,构建相应的CNN-LSTM模型并训练,评估其在验证集上的预测性能(如均方误差MSE)作为适应度函数。

根据PSO算法更新粒子的位置和速度,不断寻找更优的模型参数配置。

迭代此过程直至满足停止条件(如达到最大迭代次数或找到足够好的解)。