150. 逆波兰表达式求值
class Solution {
public int evalRPN(String[] tokens) {
Stack<Integer> stack = new Stack<>();
for(String s : tokens){
if("+".equals(s)){
stack.push(stack.pop() + stack.pop());
}else if("*".equals(s)){
stack.push(stack.pop() * stack.pop());
}else if("/".equals(s)){
int a = stack.pop();
int b = stack.pop();
stack.push(b / a);
}else if("-".equals(s)){
stack.push(- stack.pop() + stack.pop());
}else{
stack.push(Integer.valueOf(s));
}
}
return stack.pop();
}
}
239. 滑动窗口最大值
自己写的代码在某一个testcase中超时了。
class Solution {
public int[] maxSlidingWindow(int[] nums, int k) {
if(nums.length == 1){
return nums;
}
List<Integer> list = new LinkedList<Integer>();
int[] res = new int[nums.length-k+1];
for(int i=0;i<k;i++){
list.add(nums[i]);
}
for(int i=0;i < nums.length-k+1;i++){
res[i] = Collections.max(list);
list.remove(0);
if(i+k < nums.length){
list.add(nums[i+k]);
}
}
return res;
}
}
//解法一
//自定义数组
class MyQueue {
Deque<Integer> deque = new LinkedList<>();
//弹出元素时,比较当前要弹出的数值是否等于队列出口的数值,如果相等则弹出
//同时判断队列当前是否为空
void poll(int val) {
if (!deque.isEmpty() && val == deque.peek()) {
deque.poll();
}
}
//添加元素时,如果要添加的元素大于入口处的元素,就将入口元素弹出
//保证队列元素单调递减
//比如此时队列元素3,1,2将要入队,比1大,所以1弹出,此时队列:3,2
void add(int val) {
while (!deque.isEmpty() && val > deque.getLast()) {
deque.removeLast();
}
deque.add(val);
}
//队列队顶元素始终为最大值
int peek() {
return deque.peek();
}
}
class Solution {
public int[] maxSlidingWindow(int[] nums, int k) {
if (nums.length == 1) {
return nums;
}
int len = nums.length - k + 1;
//存放结果元素的数组
int[] res = new int[len];
int num = 0;
//自定义队列
MyQueue myQueue = new MyQueue();
//先将前k的元素放入队列
for (int i = 0; i < k; i++) {
myQueue.add(nums[i]);
}
res[num++] = myQueue.peek();
for (int i = k; i < nums.length; i++) {
//滑动窗口移除最前面的元素,移除是判断该元素是否放入队列
myQueue.poll(nums[i - k]);
//滑动窗口加入最后面的元素
myQueue.add(nums[i]);
//记录对应的最大值
res[num++] = myQueue.peek();
}
return res;
}
}
//解法二
//利用双端队列手动实现单调队列
/**
* 用一个单调队列来存储对应的下标,每当窗口滑动的时候,直接取队列的头部指针对应的值放入结果集即可
* 单调队列类似 (tail -->) 3 --> 2 --> 1 --> 0 (--> head) (右边为头结点,元素存的是下标)
*/
class Solution {
public int[] maxSlidingWindow(int[] nums, int k) {
ArrayDeque<Integer> deque = new ArrayDeque<>();
int n = nums.length;
int[] res = new int[n - k + 1];
int idx = 0;
for(int i = 0; i < n; i++) {
// 根据题意,i为nums下标,是要在[i - k + 1, i] 中选到最大值,只需要保证两点
// 1.队列头结点需要在[i - k + 1, i]范围内,不符合则要弹出
while(!deque.isEmpty() && deque.peek() < i - k + 1){
deque.poll();
}
// 2.既然是单调,就要保证每次放进去的数字要比末尾的都大,否则也弹出
while(!deque.isEmpty() && nums[deque.peekLast()] < nums[i]) {
deque.pollLast();
}
deque.offer(i);
// 因为单调,当i增长到符合第一个k范围的时候,每滑动一步都将队列头节点放入结果就行了
if(i >= k - 1){
res[idx++] = nums[deque.peek()];
}
}
return res;
}
}
347.前 K 个高频元素
使用priorityqueue
class Solution {
public int[] topKFrequent(int[] nums, int k) {
Map<Integer,Integer> map = new HashMap<>(); //key为数组元素值,val为对应出现次数
for (int num : nums) {
map.put(num, map.getOrDefault(num,0) + 1);
}
PriorityQueue<int[]> pq = new PriorityQueue<>((pair1, pair2) -> pair2[1] - pair1[1]);
for (Map.Entry<Integer, Integer> entry : map.entrySet()) {//大顶堆需要对所有元素进行排序
pq.add(new int[]{entry.getKey(), entry.getValue()});
}
int[] ans = new int[k];
for (int i = 0; i < k; i++) { //依次从队头弹出k个,就是出现频率前k高的元素
ans[i] = pq.poll()[0];
}
return ans;
}
}
小顶堆 需要复习
class Solution {
public int[] topKFrequent(int[] nums, int k) {
Map<Integer,Integer> map = new HashMap<>(); //key为数组元素值,val为对应出现次数
for (int num : nums) {
map.put(num, map.getOrDefault(num, 0) + 1);
}
//在优先队列中存储二元组(num, cnt),cnt表示元素值num在数组中的出现次数
//出现次数按从队头到队尾的顺序是从小到大排,出现次数最低的在队头(相当于小顶堆)
PriorityQueue<int[]> pq = new PriorityQueue<>((pair1, pair2) -> pair1[1] - pair2[1]);
for (Map.Entry<Integer, Integer> entry : map.entrySet()) { //小顶堆只需要维持k个元素有序
if (pq.size() < k) { //小顶堆元素个数小于k个时直接加
pq.add(new int[]{entry.getKey(), entry.getValue()});
} else {
if (entry.getValue() > pq.peek()[1]) { //当前元素出现次数大于小顶堆的根结点(这k个元素中出现次数最少的那个)
pq.poll(); //弹出队头(小顶堆的根结点),即把堆里出现次数最少的那个删除,留下的就是出现次数多的了
pq.add(new int[]{entry.getKey(), entry.getValue()});
}
}
}
int[] ans = new int[k];
for (int i = k - 1; i >= 0; i--) { //依次弹出小顶堆,先弹出的是堆的根,出现次数少,后面弹出的出现次数多
ans[i] = pq.poll()[0];
}
return ans;
}
}