基于变异混合蛙跳算法的车间调度最优化matlab仿真,可以任意调整工件数和机器数,输出甘特图

68 阅读3分钟

1.程序功能描述

变异混合蛙跳算法的车间调度最优化,可以任意调整工件数和机器数,输出甘特图。

 

2.测试软件版本以及运行结果展示

MATLAB2022a版本运行

1.jpeg

2.jpeg

3.jpeg

4.jpeg

5.jpeg

6.jpeg

 

 

 

3.核心程序

`%初始种群

Pop_n = round(sqrt(Npop));                 

Pop_s = ceil(Npop/Pop_n);              

Npop  =Pop_s*Pop_n;                     

 

[Xs,ff] = func_initial(T,Npop);

 

fout = zeros(Iters,1);                                     

for i = 1:Iters

i

    [ff,I] = sort(ff,'descend');

Xs     = Xs(I,:);

    Pmax   = Xs(1,:);

    Fmax   = ff(1);

 

    for j = 1:Pop_n

        Pops       = Xs(j:Pop_n:end,:);            % 子种群

        ff_        = ff(j:Pop_n:end,:);

        [Popss,F3] = func_FLA(T,Pops,ff_,Pmax,Fmax);

 

Xs(j:Pop_n:end,:) = Popss;

ff(j:Pop_n:end,:) = F3;

    end

 

    [Xsolve,ybest]  = func_Eval(Xs,ff);                      % 进化结果评估

 

 

fout(i) = -mean(ybest);

end

 

 

 

 

figure

[Fouts,Etime] = func_fitness(T,Xsolve);

Stime         = Etime-T(:,Xsolve); % 开始时间

fval          = -Fouts;

M1            = size(T,1);    % 行数M1为机器数

NX            = length(Xsolve);    % 列数NX为工件数

for i = 1:M1

    for j = 1:NX

        x1 = Stime(i,j);

        x2 = Etime(i,j);

        y1 = i-1;

        y2 = i-0.05;

fill([x1 x2 x2 x1],[y1 y1 y2 y2],[0,1,0]);

        text(x10.55+x20.45,(y1+y2)/2,[num2str(Xsolve(j))],'Fontsize',8,'Color','k');

        hold on;

    end

    text(-0.8,(y1+y2)/2,['机器 ',num2str(i)],'Fontsize',8,'Color','k');

end

 

hold off;

xlabel('时间');

set(gca,'ytick',[],'YDir','reverse','Color',[1 1 1]);

axis([0 fval 0 M1-0.05]);

title(['工件数:',num2str(NX),', 机器数:',num2str(M1),', 最优值:',num2str(fval)]);

 

 

figure;

plot(1:Iters,fout(1:end),'b-o');

grid on;

xlabel('进化代数');

ylabel('适应度');

21`  

 

4.本算法原理

          基于变异混合蛙跳算法的车间调度最优化是一种结合了蛙跳算法(Shuffled Frog Leaping Algorithm, SFLA)和变异策略的优化方法,用于解决车间调度问题(Job-Shop Scheduling Problem, JSSP)。

 

4.1 车间调度问题(JSSP)描述

       给定一个车间,其中有 (n) 个作业(Jobs)和 (m) 台机器(Machines)。每个作业由一系列工序(Operations)组成,每个工序必须在特定的机器上完成,且每个作业的工序顺序是预先确定的。JSSP的目标是为每个机器找到一个作业工序的序列,使得所有作业的总完成时间最小化。

 

4.2 蛙跳算法(SFLA)基本原理

        蛙跳算法是一种群体智能优化算法,模拟了蛙群在寻找食物时的跳跃行为。在SFLA中,蛙群被分为多个子群,每个子群内的蛙通过局部搜索和信息交换寻找最优解。VHSFLA在基本SFLA的基础上引入了变异策略,以增强算法的全局搜索能力和避免陷入局部最优解。

 

4.2.1 初始化

初始化蛙群:随机生成一定数量的蛙(解),每个蛙代表一个可能的作业调度方案。

分组:将蛙群分为多个子群。

4.2.2 局部搜索

在每个子群内,蛙按照一定的规则进行跳跃(即解的更新)。跳跃的步长和方向通常由当前蛙的位置、子群内最优蛙的位置以及全局最优蛙的位置决定。

 

4.2.3 全局信息交换

经过一定次数的局部搜索后,子群内的蛙会与其他子群的蛙进行信息交换,以促进全局搜索。

 

4.2.4 变异策略

为了增强算法的全局搜索能力,VHSFLA引入了变异策略。变异操作可以随机地改变蛙的某些基因(即作业工序的顺序),从而产生新的解。

 

4.2.5 终止条件

算法会在满足一定条件时终止,如达到最大迭代次数或解的质量满足要求。