本文主要是整理一些多线程面试常见的手撕题,可能不是很全,后续会继续补充,感兴趣的同学可以看一下!
本文详细代码全都放在 Github 了,有需要的同学可以上 Github 自取:
1. 写两个线程轮流打印 1 - 100
这个是一道简单的 Java 多线程程序题,一个线程打印奇数,另外一个线程打印偶数,线程之间通过 wait()和 notifyAll()方法进行协调,确保轮流打印数字
/**
* @author linqi
* @version 1.0.0
* @description 两个线程轮流打印 1~100
*/
public class AlternatePrinting {
private int currentNumber = 1;
private final Object lock = new Object();
public static void main(String[] args) {
AlternatePrinting ap = new AlternatePrinting();
// 创建奇数打印线程
Thread oddPrinter = new Thread(() -> {
ap.printNumber(true);
});
oddPrinter.start();
// 创建偶数打印线程
Thread evenPrinter = new Thread(() -> {
ap.printNumber(false);
});
evenPrinter.start();
}
/**
* 根据 isOdd 标志打印奇数或者偶数
*
* @param flag true:奇数 false:偶数
*/
private void printNumber(boolean flag) {
while (currentNumber <= 100) {
synchronized (lock) {
while ((flag && currentNumber % 2 == 0) || (!flag && currentNumber % 2 == 1)) {
try {
// 如果当前线程不应该打印,等待
lock.wait();
} catch (InterruptedException e) {
throw new RuntimeException(e);
}
}
if (currentNumber <= 100) {
System.out.println("Thread " + (flag ? "Odd " : "Even") + ": " + currentNumber);
currentNumber++;
lock.notifyAll();
}
}
}
}
}
2. 三个线程交替顺序打印出 1-100
针对每个线程分配一个打印范围,第一个线程打印 3 的倍数,第二个线程打印 3n + 1 的数,第三个线程打印 3n + 2 的数(其中n是非负整数),同时使用一种机制来确保三个线程交替执行。
public class AlternatePrintingThreeThreads {
/**
* 当前要打印的数字
*/
private int currentNumber = 1;
/**
* 用于同步的锁对象
*/
private final Object lock = new Object();
/**
* 控制哪个线程应该打印的标识 0:3n ,1:3n + 1,2: 3n + 2
*/
private int turn = 0;
public static void main(String[] args) {
AlternatePrintingThreeThreads ap = new AlternatePrintingThreeThreads();
// 创建并启动三个线程
Thread t1 = new Thread(() -> ap.printNumbers(0));
Thread t2 = new Thread(() -> ap.printNumbers(1));
Thread t3 = new Thread(() -> ap.printNumbers(2));
t1.start();
t2.start();
t3.start();
}
/**
* 根据 turn 的值打印对应范围的数字
*
* @param offset 0:3n 1:3n+1 2:3n+2
*/
private void printNumbers(int offset) {
while (currentNumber <= 100) {
synchronized (lock) {
while ((turn % 3) != offset) {
try {
lock.wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
if (currentNumber <= 100 && (currentNumber - 1) % 3 == offset) {
System.out.println("Thread " + (offset + 1) + " printed: " + currentNumber);
currentNumber++;
turn = (turn + 1) % 3;
lock.notifyAll();
}
}
}
}
}
在程序中,使用 ture 变量来控制线程的打印,然后每个线程打印前检查一下 turn 的值,如果不是轮到自己打印,就调用了 wait 方法进入等待状态。当一个线程打印完毕之后,更新 turn 的值,并且通过 notifyAll()方法唤醒其他可能在等待的线程。
3. 多线程问题:线程 A,B,C 分别打印 1、2、3,顺序执行 10 次
为了顺序执行10次打印任务,其中线程A打印1,线程B打印2,线程C打印3,我们可以使用一个共享的计数器来跟踪当前的打印轮次,并确保每个线程在正确的轮次中执行。
/**
* @author linqi
* @version 1.0.0
* @description 线程 A、B、C 分别打印 1,2,3 顺序执行 10 次
*/
public class SequentialPrinting {
/**
* 当前线程打印的次数
*/
private int count = 0;
/**
* 用于同步锁对象
*/
private final Object lock = new Object();
public static void main(String[] args) {
SequentialPrinting printer = new SequentialPrinting();
// 创建并启动线程
Thread tA = new Thread(() -> printer.printNumber(1), "A");
Thread tB = new Thread(() -> printer.printNumber(2), "B");
Thread tC = new Thread(() -> printer.printNumber(3), "C");
tA.start();
tB.start();
tC.start();
}
private void printNumber(int numberToPrint) {
for (int i = 0; i < 10; i++) {
synchronized (lock) {
while (count % 3 != numberToPrint - 1) {
try {
lock.wait();
} catch (InterruptedException e) {
throw new RuntimeException(e);
}
}
if (count < 30) {
System.out.println("Thread " + Thread.currentThread().getName() + ": " + numberToPrint);
count++;
lock.notifyAll();
}
}
}
}
}
在这个程序中,count变量用来跟踪当前的打印轮次,并且确保每个线程在正确的轮次执行。每个线程都会检查count的值,如果当前轮次不是自己的,就会调用wait()方法进入等待状态。当一个线程打印完毕后,它会增加count的值,并通过notifyAll()方法唤醒其他可能在等待的线程。
注意,count变量的上限设置为30(10轮,每轮3个数字),以确保程序只执行10轮打印。每个线程都会检查这个条件,以避免超出所需的打印轮次。
此程序会按顺序(线程A、线程B、线程C)执行打印任务,每个线程打印自己的数字,总共进行10轮。
4. 计数累加怎么线程安全,可以怎么实现,100个线程,每个线程累加100次
以下是一个简单的Java示例,演示了如何使用AtomicInteger来实现线程安全的计数累加。在这个示例中,我们将创建100个线程,并且每个线程将对计数器执行100次累加操作。
public class AtomicCounterDemo {
private static final AtomicInteger counter = new AtomicInteger(0);
public static void main(String[] args) throws InterruptedException {
// 创建100个线程来增加计数器的值
ExecutorService executor = Executors.newFixedThreadPool(100);
// 提交 100 个任务,每个任务执行 100 次累加
for (int i = 0; i < 100; i++) {
executor.submit(new Runnable() {
@Override
public void run() {
for (int i = 0; i < 100; i++) {
counter.incrementAndGet();
}
}
});
}
// 关闭线程池
executor.shutdown();
// 等待所有任务完成
executor.awaitTermination(1, TimeUnit.HOURS);
// 输出最终的值
System.out.println("Final counter value: " + counter.get());
}
}
在这个示例中,我们定义了一个 AtomicInteger 类型的静态变量counter作为我们的计数器。incrementCounterHundredTimes方法包含了一个循环,它会使计数器递增100次。由于AtomicInteger的incrementAndGet方法是线程安全的,所以我们不需要额外的同步措施。
在main方法中,我们创建了一个拥有100个线程的线程池,并提交了100个任务,每个任务都会执行incrementCounterHundredTimes方法。在所有任务完成后,我们输出最终的计数值。由于每个线程都会将计数器增加100,所以最终的计数值应该是 100 * 100 = 10000。
5. 线程交叉打印12A34B56C,多种实现方式(一个打印数字,一个打印字母)
示例 1:使用wait()和notifyAll()
/**
* @author linqi
* @version 1.0.0
* @description 线程交替打印 12A34B56C 使用 wait() 和 notifyAll()
*/
public class CrossPrint {
private static final Object lock = new Object();
private static boolean printNumber = true;
public static void main(String[] args) {
Thread printNumberThread = new Thread(() ->{
for(int i = 1; i <= 52; i=i+2){
synchronized (lock){
while(!printNumber){
try {
lock.wait();
} catch (InterruptedException e) {
throw new RuntimeException(e);
}
}
System.out.print(i);
System.out.print(i + 1);
printNumber = false;// 打印切换标志
lock.notifyAll();// 唤醒等待的线程
}
}
});
Thread printLetterThread = new Thread(() ->{
for(char c = 'A'; c <= 'Z'; c++){
synchronized (lock){
while(printNumber){
try {
lock.wait();
} catch (InterruptedException e) {
throw new RuntimeException(e);
}
}
System.out.print(c);
printNumber = true;// 打印切换标志
lock.notifyAll();// 唤醒等待的线程
}
}
});
printLetterThread.start();
printNumberThread.start();
}
}
示例 2:使用ReentrantLock和Condition
import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;
/**
* @author linqi
* @version 1.0.0
* @description
*/
public class CrossPrintWithLock {
private static final Lock lock = new ReentrantLock();
private static final Condition printNumberCondition = lock.newCondition();
private static final Condition printLetterCondition = lock.newCondition();
private static boolean printNumber = true;
public static void main(String[] args) {
Thread printNumberThread = new Thread(() ->{
for(int i = 1; i <= 52; i=i+2){
synchronized (lock){
while(!printNumber){
try {
lock.wait();
} catch (InterruptedException e) {
throw new RuntimeException(e);
}
}
System.out.print(i);
System.out.print(i + 1);
printNumber = false;// 打印切换标志
lock.notifyAll();// 唤醒等待的线程
}
}
});
Thread printLetterThread = new Thread(() ->{
for(char c = 'A'; c <= 'Z'; c++){
synchronized (lock){
while(printNumber){
try {
lock.wait();
} catch (InterruptedException e) {
throw new RuntimeException(e);
}
}
System.out.print(c);
printNumber = true;// 打印切换标志
lock.notifyAll();// 唤醒等待的线程
}
}
});
printLetterThread.start();
printNumberThread.start();
}
}
6. 两个线程交替打印ABCD..Z字母,一个大写一个小写
目标输出:AbCdEfGhIjKlMnOpQrStUvWxYz
代码示例:
/**
* @author linqi
* @version 1.0.0
* @description
*/
public class AlternateLetterPrinting {
private static final Object lock = new Object();
private static char currentLetter = 'A';
private static boolean printUpperCase = true;
public static void main(String[] args) {
Thread upperCasePrinter = new Thread(()-> printLetter(true));
Thread lowerCasePrinter = new Thread(()-> printLetter(false));
upperCasePrinter.start();
lowerCasePrinter.start();
}
private static void printLetter(boolean isUpperCaseThread) {
while (currentLetter <= 'Z'){
synchronized (lock){
while (printUpperCase != isUpperCaseThread) {
try {
lock.wait();
} catch (InterruptedException e) {
throw new RuntimeException(e);
}
}
if (currentLetter > 'Z') {
break;
}
if (isUpperCaseThread) {
System.out.print( currentLetter);
} else {
System.out.print(Character.toLowerCase( currentLetter));
}
printUpperCase = !printUpperCase;
currentLetter++;
lock.notifyAll();
}
}
}
}
7. 两个线程交替打印出a1b2c3.....z26
示例代码:
/**
* @author linqi
* @version 1.0.0
* @description
*/
public class AlternatePrintingNumberLetter {
private static final Object lock = new Object();
/**
* 用于计数,确认打印的字母和数字
*/
private static int count = 1;
/**
* 控制标记,用于控制是否打印数字
*/
private static boolean printNumber = false;
public static void main(String[] args) {
// 创建打印数字的线程
Thread printNumberThread = new Thread(() ->{
while(count <= 26){
synchronized (lock){
while(!printNumber){
try {
lock.wait();
} catch (InterruptedException e) {
throw new RuntimeException(e);
}
}
if(count <= 26){
System.out.print(count);
count++;
printNumber = false;
lock.notifyAll();
}
}
}
});
// 创建打印字母的线程
Thread printLetterThread = new Thread(()->{
while(count <= 26){
synchronized (lock){
while(printNumber) {
try {
lock.wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
if (count <= 26){
char letter = (char)('a' + count - 1);
System.out.print(letter);
printNumber = true;
lock.notify();
}
}
}
});
printNumberThread.start();
printLetterThread.start();
}
}
这个demo中,我们使用了Object类的wait()和notifyAll()方法来控制两个线程的交替执行。wait()方法会使当前线程等待,直到其他线程调用notifyAll()方法唤醒所有在该对象上等待的线程。
我们使用count变量来跟踪打印的进度,printNumber标志来控制哪个线程应该打印。当一个线程打印完毕后,它会更改printNumber标志,并通过notifyAll()唤醒其他线程。这样,两个线程就可以交替执行,直到打印完z26。
8. 两个线程,一个打印abcd,一个打印1234,需求交替打印出a1b2c3d4a1b2c3d4 ; 打印10轮
我们需要一个共享资源来控制线程之间的交替执行,并确保它们按顺序打印。以下是一个简单的Java示例,其中包含必要的同步机制以实现所需的交替打印:
/**
* @author linqi
* @version 1.0.0
* @description
*/
public class AlternatePrintDemo {
private static final Object lock = new Object();
/**
* 0 表示打印字母,1 表示数字
*/
private static int state = 0;
private static int round = 0;
public static void main(String[] args) {
Thread printLetters = new Thread(() ->{
for(int i = 0; i < 40;i++){
synchronized (lock){
while(state != 0){
try {
lock.wait();
} catch (InterruptedException e) {
throw new RuntimeException(e);
}
}
if(round < 10){
char letter = (char)('a' + (i % 4));
System.out.print(letter);
state = 1;
lock.notifyAll();
}
}
}
});
Thread printNumbers = new Thread(() ->{
for(int i = 0; i < 40 ;i++){
synchronized (lock){
while(state != 1){
try {
lock.wait();
} catch (InterruptedException e) {
throw new RuntimeException(e);
}
}
if(round < 10){
int number = (i % 4 )+ 1;
System.out.print(number);
if( (i + 1) % 4 == 0){
round++;
}
state = 0;
lock.notifyAll();
}
}
}
});
printNumbers.start();
printLetters.start();
}
}
在这个示例中,我们使用了一个state变量来控制哪个线程应该打印。state为0时,字母线程打印;state为1时,数字线程打印。我们还使用了一个round变量来跟踪已经完成的打印轮数。当达到10轮时,两个线程将停止打印。
注意,这个示例依赖于Java对象的内置锁(通过synchronized关键字实现)和等待/通知机制(通过wait()和notifyAll()方法实现)。这种方法确保了线程之间的正确同步,以实现交替打印。
9. 假设有T1、T2、T3三个线程,你怎样保证T2在T1执行完后执行,T3在T2执行完后执行?
方式一:只使用 join
import java.util.Random;
/**
* @author linqi
* @version 1.0.0
* @description T2 在 T1 之后执行,T3 在 T2 之后执行
*/
public class ThreadJoinDemo {
public static void main(String[] args) {
Thread t1 = new Thread(new Task("T1"), "T1");
Thread t2 = new Thread(new Task("T2"), "T2");
Thread t3 = new Thread(new Task("T3"), "T3");
// 启动 t1
t1.start();
try {
t1.join();
t2.start();
t2.join();
t3.start();
t3.join();
} catch (InterruptedException e) {
throw new RuntimeException(e);
}
}
private static class Task implements Runnable {
private String name;
public Task(String name) {
this.name = name;
}
@Override
public void run() {
long startTime = System.currentTimeMillis();
System.out.println(name + " 开始执行!");
try {
Thread.sleep((long) (Math.random() * 1000));
} catch (InterruptedException e) {
throw new RuntimeException(e);
}
System.out.println(name + " 执行完毕!");
long endTime = System.currentTimeMillis();
System.out.println(name + " 执行时间:" + (endTime - startTime) + "ms");
System.out.println("--------------------------------");
}
}
}
在这个示例中,Task是一个实现了Runnable接口的类,它代表了一个可以被线程执行的任务。在main方法中,我们创建了三个线程t1、t2和t3,分别对应T1、T2和T3。我们首先启动t1,然后使用t1.join()等待它完成。一旦t1完成,我们启动t2并等待它完成,依此类推。这种方法确保了线程按照T1 -> T2 -> T3的顺序执行。
方式二:使用join配合CountDownLatch的一个简单示例:
import java.util.concurrent.CountDownLatch;
/**
* @author linqi
* @version 1.0.0
* @description
*/
public class ThreadExecutionOrderDemo {
private static CountDownLatch t1ToT2Latch = new CountDownLatch(1);
private static CountDownLatch t2ToT3Latch = new CountDownLatch(1);
public static void main(String[] args) throws InterruptedException {
Thread t1 = new Thread(() -> {
long startTime = System.currentTimeMillis();
System.out.println("T1 开始执行!");
try {
Thread.sleep((long) (Math.random() * 1000));
} catch (InterruptedException e) {
throw new RuntimeException(e);
}
long endTime = System.currentTimeMillis();
System.out.println("T1 执行时间:" + (endTime - startTime) + "ms");
System.out.println("T1 执行完毕!");
System.out.println("------------------------------------------------");
t1ToT2Latch.countDown();
}, "T1");
Thread t2 = new Thread(() -> {
try{
t1ToT2Latch.await();
} catch (InterruptedException e) {
throw new RuntimeException(e);
}
long startTime = System.currentTimeMillis();
System.out.println("T2 开始执行!");
try {
Thread.sleep((long) (Math.random() * 1000));
} catch (InterruptedException e) {
throw new RuntimeException(e);
}
long endTime = System.currentTimeMillis();
System.out.println("T2 执行时间:" + (endTime - startTime) + "ms");
System.out.println("T2 执行完毕!");
System.out.println("------------------------------------------------");
t2ToT3Latch.countDown();
}, "T2");
Thread t3 = new Thread(() -> {
try{
t2ToT3Latch.await();
} catch (InterruptedException e) {
throw new RuntimeException(e);
}
long startTime = System.currentTimeMillis();
System.out.println("T3 开始执行!");
try {
Thread.sleep((long) (Math.random() * 1000));
} catch (InterruptedException e) {
throw new RuntimeException(e);
}
long endTime = System.currentTimeMillis();
System.out.println("T3 执行时间:" + (endTime - startTime) + "ms");
System.out.println("T3 执行完毕!");
}, "T3");
t1.start();
t2.start();
t3.start();
t1.join();
t2.join();
t3.join();
}
}
在这个示例中,t1ToT2Latch和t2ToT3Latch是两个CountDownLatch实例,分别用于控制T1到T2和T2到T3的执行顺序。T2线程在开始执行其主要任务之前会等待t1ToT2Latch计数到0,而T3线程则会等待t2ToT3Latch计数到0。这样,我们就可以确保T2在T1完成后执行,T3在T2完成后执行。
10. 仿购票系统,目前有1000张票,同时有10个购票窗口,模拟购票流程,打印购票结果,比如:从1窗口购买1张票,剩余999张票
以下是一个简单的Java示例,模仿了一个购票系统。这个系统有1000张票,并且有10个购票窗口。每个窗口可以购买票,每次购票后,系统会更新剩余票数并打印出来。
import java.util.Random;
/**
* @author linqi
* @version 1.0.0
* @description 购票系统
*/
public class TicketSystemDemo {
/**
* 总共票数
*/
private static final int TOTAL_TICKETS = 1000;
/**
* 剩余票数
*/
private static int remainingTICKETS = TOTAL_TICKETS;
/**
* 锁对象,用于同步
*/
private static final Object lock = new Object();
public static void main(String[] args) {
// 创建线程,并且启动
for (int i = 0; i < 10; i++) {
new Thread(new TicketSeller(i)).start();
}
}
private static class TicketSeller implements Runnable {
private int windowNumber;
public TicketSeller(int windowNumber) {
this.windowNumber = windowNumber;
}
@Override
public void run() {
while (true) {
synchronized (lock) {
if (remainingTICKETS > 0) {
try {
Thread.sleep(100);
} catch (InterruptedException e) {
e.printStackTrace();
}
buyTicket();
} else {
break;
}
// 模拟购票后的其他操作,增加随机性
try {
Thread.sleep((long) (Math.random() * 1000));
} catch (InterruptedException e) {
throw new RuntimeException(e);
}
}
}
}
private void buyTicket() {
int number = new Random().nextInt(10);
if(remainingTICKETS >= number && number > 0){
remainingTICKETS = remainingTICKETS - number;
System.out.println("从窗口 G1000" + windowNumber + " 购买了 " + number + " 张票, 还剩 " + remainingTICKETS + " 张票");
}
}
}
}
在这个示例中,TicketSystemDemo 类包含了一个模拟购票系统的主程序。TicketWindow 类实现了 Runnable接口,代表一个购票窗口。每个窗口在一个单独的线程中运行,尝试购买票,直到票卖完为止。
关键点是使用 synchronized 块来同步对剩余票数的访问,以避免多个线程同时修改票数导致数据不一致。当剩余票数为0时,窗口线程将结束执行。
11. 有一批任务Tasks, 现在我需要实现按批次执行,并且批次可以动态指定,例如[1,3,5,7]第一批执行,[11,13,15,17]第二批执行,..., 最后没有指定的任务就最后一起执行掉。批次之间需要按顺序,前一批执行完了才执行下一批
import java.util.*;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.Future;
/**
* @author linqi
* @version 1.0.0
* @description
*/
public class TaskRunner {
public static void main(String[] args) {
// 假设创建了 100 个任务
List<Runnable> tasks = TaskRunner.createTasks();
// 第一批和第二批执行的任务索引
List<Integer> batch1 = new ArrayList<Integer>(Arrays.asList(1, 3, 5, 7));
List<Integer> batch2 = new ArrayList<Integer>(Arrays.asList(11, 13, 15, 17));
List<List<Integer>> batchs = new ArrayList<>();
batchs.add(batch1);
batchs.add(batch2);
try {
runTasksInBatches(tasks, batchs);
System.out.println("====== 全部任务执行完成!======");
} catch (ExecutionException e) {
throw new RuntimeException(e);
} catch (InterruptedException e) {
throw new RuntimeException(e);
}
}
private static void runTasksInBatches(List<Runnable> tasks, List<List<Integer>> batchs) throws ExecutionException, InterruptedException {
// 使用固定大小的线程池
ExecutorService executor = Executors.newFixedThreadPool(10);
// 执行第一批任务
List<Future<Void>> futures = new ArrayList<Future<Void>>();
Set<Integer> allBatchTaskIndexs = new HashSet<Integer>();
for (int i = 0; i < batchs.size(); i++) {
System.out.println("====== 第 " + (i + 1) + " 批任务开始执行!======");
for (int index : batchs.get(i)) {
Future<Void> future = (Future<Void>) executor.submit(tasks.get(index));
futures.add(future);
allBatchTaskIndexs.add(index);
}
// 等待一批任务完成
for (Future<Void> f : futures) {
f.get();
}
futures.clear();
System.out.println("====== 第 " + (i + 1) + " 批任务执行完成!======");
}
// 执行剩下的任务
System.out.println("====== 最后 1 批任务开始执行!======");
for (int i = 0; i < tasks.size(); i++) {
if (!allBatchTaskIndexs.contains(i)) {
executor.submit(tasks.get(i));
}
}
// 关闭线程池,并且等待所有任务执行
executor.shutdown();
while (!executor.isTerminated()) {
// 等待所有任务执行完毕
}
System.out.println("====== 最后 1 批任务执行完成!======");
}
private static List<Runnable> createTasks() {
List<Runnable> tasks = new ArrayList<>();
// 创建任务的逻辑
for (int i = 0; i < 30; i++) {
final int taskId = i;
tasks.add(() -> {
try {
long startTime = System.currentTimeMillis();
Thread.sleep((long) (Math.random() * 1000));
long endTime = System.currentTimeMillis();
System.out.println("执行任务,任务 ID :" + taskId + ",耗时:" + (endTime - startTime) + "ms");
} catch (InterruptedException e) {
throw new RuntimeException(e);
}
});
}
return tasks;
}
}
12. 手写线程池
import java.util.concurrent.ArrayBlockingQueue;
import java.util.concurrent.BlockingQueue;
import java.util.concurrent.Executor;
import java.util.concurrent.atomic.AtomicInteger;
/**
* @author linqi
* @version 1.0.0
* @description
*/
public class ThreadPoolTrader implements Executor {
private final AtomicInteger ctl = new AtomicInteger(0);
private volatile int corePoolSize;
private volatile int maximumPoolSize;
private final BlockingQueue<Runnable> workQueue;
public ThreadPoolTrader(int corePoolSize, int maximumPoolSize, BlockingQueue<Runnable> workQueue) {
this.corePoolSize = corePoolSize;
this.maximumPoolSize = maximumPoolSize;
this.workQueue = workQueue;
}
@Override
public void execute(Runnable command) {
int c = ctl.get();
if (c < corePoolSize) {
if (!addWorker(command)) {
reject();
}
return;
}
if (!workQueue.offer(command)) {
if (!addWorker(command)) {
reject();
}
}
}
private boolean addWorker(Runnable firstTask) {
if (ctl.get() >= maximumPoolSize) {
return false;
}
Worker worker = new Worker(firstTask);
worker.thread.start();
ctl.incrementAndGet();
return true;
}
private final class Worker implements Runnable {
final Thread thread;
Runnable firstTask;
public Worker(Runnable firstTask) {
this.thread = new Thread(this);
this.firstTask = firstTask;
}
@Override
public void run() {
Runnable task = firstTask;
try {
while (task != null || (task = getTask()) != null) {
task.run();
if (ctl.get() > maximumPoolSize) {
break;
}
task = null;
}
} finally {
ctl.decrementAndGet();
}
}
private Runnable getTask() {
for (; ; ) {
try {
System.out.println("workQueue.size:" + workQueue.size());
return workQueue.take();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
}
private void reject() {
throw new RuntimeException("Error!ctl.count:" + ctl.get() + " workQueue.size:" + workQueue.size());
}
public static void main(String[] args) {
ThreadPoolTrader threadPoolTrader = new ThreadPoolTrader(2, 2, new ArrayBlockingQueue<Runnable>(10));
for (int i = 0; i < 10; i++) {
int finalI = i;
threadPoolTrader.execute(() -> {
try {
Thread.sleep(1500);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println("任务编号:" + finalI);
});
}
}
}