m基于PSO-GRU粒子群优化长门控循环单元网络的电力负荷数据预测算法matlab仿真

62 阅读2分钟

1.算法仿真效果

matlab2022a仿真结果如下:

 

优化前:

7cd34ee06a33e9465bdfcdd54247e3a5_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

  2.jpeg

优化后:

78e09f10ab09ebf18ab711704c4218dc_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

  c51a38c4dd2f9229059f50163dc5d34e_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

对比如下:

 

d27c2ce408c6b20752b960a75e2bbfa3_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg  

2.算法涉及理论知识概要

       基于粒子群优化(Particle Swarm Optimization, PSO)和长门控循环单元(Gated Recurrent Unit, GRU)网络的电力负荷预测算法,是一种融合了优化技术和深度学习的先进预测模型。这种混合方法旨在通过PSO算法优化GRU网络的超参数,以提高模型在电力负荷预测任务中的准确性和稳定性。

 

       PSO是一种启发式全局优化技术,灵感来源于鸟群觅食行为,通过模拟个体(粒子)在解空间中的搜索来寻找最优解。每个粒子代表一个潜在解决方案,并通过跟踪历史最优解和个人最优解来更新其位置和速度。

 

de66c568f119df4637712b7f25dfa6f1_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

 

       GRU是RNN的一种变体,设计用于解决长期依赖问题。它通过引入更新门和重置门来控制信息的遗忘和更新,提高了模型的表达能力和训练效率。

 

4129950fdd529f98cf3aa3aee8741e13_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

 

      在电力负荷预测任务中,首先使用历史数据训练GRU网络。GRU的超参数,如学习率、隐藏层大小、层数等,是影响模型性能的关键因素。这些超参数通过PSO算法进行优化,以寻找使预测误差最小化的最优参数组合。

 

3.MATLAB核心程序 `figure

plot(Error2,'linewidth',2);

grid on

xlabel('迭代次数');

ylabel('遗传算法优化过程');

legend('Average fitness');

 

% 设置训练选项

options = trainingOptions('adam', ...

    'MaxEpochs',200, ...

    'GradientThreshold',1, ...

    'InitialLearnRate',0.01, ...

    'LearnRateSchedule','piecewise', ...

    'LearnRateDropPeriod',125, ...

    'LearnRateDropFactor',0.1, ...

    'Verbose',0, ...

    'Plots','training-progress');

net  = trainNetwork(P,T,layers,options);

 

 

ypred = predict(net,[P],'MiniBatchSize',1);

 

 

figure;

subplot(211);

plot(T)

hold on

plot(ypred)

xlabel('days');

ylabel('负荷');

legend('实际负荷','GRU预测负荷');

subplot(212);

plot(T-ypred)

xlabel('days');

ylabel('GRU误差');

 

 

 

save R2.mat T ypred

0X_059m`