⌈ 传知代码 ⌋ 预测人物性别年龄

134 阅读2分钟

前情提要

本文是传知代码平台中的相关前沿知识与技术的分享~

接下来我们即将进入一个全新的空间,对技术有一个全新的视角~

本文所涉及所有资源均在传知代码平台可获取

以下的内容一定会让你对AI 赋能时代有一个颠覆性的认识哦!!!

以下内容干货满满,跟上步伐吧~


💡本章重点

  • 预测人物性别年龄

🍞一. 概述

照片中的面部分析引起了人们的广泛关注,因为它可以帮助我们解决各种问题,包括更好的客户广告定位、更好的内容推荐系统、安全监控和其他领域。

年龄和性别是面部特征的重要方面,确定它们是此类活动的先决条件。许多企业出于各种原因使用这些技术,包括更轻松地与客户合作、更好地适应他们的需求以及提供良好的体验。人们的性别和年龄使得识别和预测他们的需求变得更加容易。

即使对我们人类来说,从图像中检测性别和年龄也很困难,因为它完全基于外表,有时很难预测,同龄人的外表可能与我们预期的截然不同。


🍞二. 演示效果

在这里插入图片描述

多个人脸的效果:

在这里插入图片描述


🍞三. 核心逻辑

  • 识别人脸:
faceProto = 'opencv_face_detector.pbtxt'
faceModel = 'opencv_face_detector_uint8.pb'
faceNet = cv.dnn.readNet(faceModel, faceProto)
  • 识别性别:
genderProto = "gender_deploy.prototxt"
genderModel = "gender_net.caffemodel"
genderNet = cv.dnn.readNet(genderModel, genderProto)
genderList = ['Male', 'Female']

  • 识别年龄:
ageProto = "age_deploy.prototxt"
ageModel = "age_net.caffemodel"
ageNet = cv.dnn.readNet(ageModel, ageProto)
ageList = ['(0 - 2)', '(4 - 6)', '(8 - 12)', '(15 - 20)', '(25 - 32)', '(38 - 43)', '(48 - 53)

使用方式

  • 上传一张包含人脸的图片
  • 提交即可预测性别、年龄

🫓总结

综上,我们基本了解了“一项全新的技术啦” :lollipop: ~~

恭喜你的内功又双叒叕得到了提高!!!

感谢你们的阅读:satisfied:

后续还会继续更新:heartbeat:,欢迎持续关注:pushpin:哟~

:dizzy:如果有错误❌,欢迎指正呀:dizzy:

:sparkles:如果觉得收获满满,可以点点赞👍支持一下哟~:sparkles:

【传知科技 -- 了解更多新知识】

在这里插入图片描述